Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
795 result(s) for "631/250/371"
Sort by:
Inflammation and immune dysfunction in Parkinson disease
Parkinson disease (PD) is a progressive neurodegenerative disease that affects peripheral organs as well as the central nervous system and involves a fundamental role of neuroinflammation in its pathophysiology. Neurohistological and neuroimaging studies support the presence of ongoing and end-stage neuroinflammatory processes in PD. Moreover, numerous studies of peripheral blood and cerebrospinal fluid from patients with PD suggest alterations in markers of inflammation and immune cell populations that could initiate or exacerbate neuroinflammation and perpetuate the neurodegenerative process. A number of disease genes and risk factors have been identified as modulators of immune function in PD and evidence is mounting for a role of viral or bacterial exposure, pesticides and alterations in gut microbiota in disease pathogenesis. This has led to the hypothesis that complex gene-by-environment interactions combine with an ageing immune system to create the ‘perfect storm’ that enables the development and progression of PD. We discuss the evidence for this hypothesis and opportunities to harness the emerging immunological knowledge from patients with PD to create better preclinical models with the long-term goal of enabling earlier identification of at-risk individuals to prevent, delay and more effectively treat the disease.This Review from Tansey and colleagues explores how an ageing immune system, host genetics and exposure to various environmental stressors combine to promote the development of Parkinson disease.
The immunology of multiple sclerosis
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.This Review explores the complex roles of immune cells in the onset and progression of multiple sclerosis, describing the influence of environmental and genetic factors on immune cell phenotype and function. The authors highlight that teasing out the precise roles of different immune cell subsets at different stages of the disease will be key to effective treatment strategies.
Function and therapeutic value of astrocytes in neurological diseases
Astrocytes are abundant glial cells in the central nervous system (CNS) that perform diverse functions in health and disease. Astrocyte dysfunction is found in numerous diseases, including multiple sclerosis, Alzheimer disease, Parkinson disease, Huntington disease and neuropsychiatric disorders. Astrocytes regulate glutamate and ion homeostasis, cholesterol and sphingolipid metabolism and respond to environmental factors, all of which have been implicated in neurological diseases. Astrocytes also exhibit significant heterogeneity, driven by developmental programmes and stimulus-specific cellular responses controlled by CNS location, cell–cell interactions and other mechanisms. In this Review, we highlight general mechanisms of astrocyte regulation and their potential as therapeutic targets, including drugs that alter astrocyte metabolism, and therapies that target transporters and receptors on astrocytes. Emerging ideas, such as engineered probiotics and glia-to-neuron conversion therapies, are also discussed. We further propose a concise nomenclature for astrocyte subsets that we use to highlight the roles of astrocytes and specific subsets in neurological diseases.In this Review, Quintana and colleagues discuss astrocytes, a type of glial cell that could be manipulated to treat neurological conditions. Potential astrocyte targets, and the progess made towards developing astrocyte-directed therapies, are highlighted, along with their potential pitfalls. They also propose a novel nomenclature for astrocyte subsets.
Sleep and inflammation: partners in sickness and in health
The discovery of reciprocal connections between the central nervous system, sleep and the immune system has shown that sleep enhances immune defences and that afferent signals from immune cells promote sleep. One mechanism by which sleep is proposed to provide a survival advantage is in terms of supporting a neurally integrated immune system that might anticipate injury and infectious threats. However, in modern times, chronic social threats can drive the development of sleep disturbances in humans, which can contribute to the dysregulation of inflammatory and antiviral responses. In this Review, I describe our current understanding of the relationship between sleep dynamics and host defence mechanisms, with a focus on cytokine responses, the neuroendocrine and autonomic pathways that connect sleep with the immune system and the role of inflammatory peptides in the homeostatic regulation of sleep. Furthermore, I discuss the therapeutic potential of harnessing these reciprocal mechanisms of sleep–immune regulation to mitigate the risk of inflammatory and infectious diseases.
Microglia and macrophages in brain homeostasis and disease
Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
A polarizing question: do M1 and M2 microglia exist?
In the twenty-first century, microglia came of age. Their remarkable ontogeny, unique functions and gene expression profile, process motility, and disease relevance have all been highlighted. Neuroscientists interested in microglia encounter an obsolete concept, M1/M2 polarization, suggesting experimental strategies that produce neither conceptual nor technical advances. Ransohoff's Perspective argues against applying this flawed paradigm. Microglial research has entered a fertile, dynamic phase characterized by novel technologies including two-photon imaging, whole-genome transcriptomic and epigenomic analysis with complementary bioinformatics, unbiased proteomics, cytometry by time of flight (CyTOF; Fluidigm) cytometry, and complex high-content experimental models including slice culture and zebrafish. Against this vivid background of newly emerging data, investigators will encounter in the microglial research literature a body of published work using the terminology of macrophage polarization, most commonly into the M1 and M2 phenotypes. It is the assertion of this opinion piece that microglial polarization has not been established by research findings. Rather, the adoption of this schema was undertaken in an attempt to simplify data interpretation at a time when the ontogeny and functional significance of microglia had not yet been characterized. Now, terminology suggesting established meaningful pathways of microglial polarization hinders rather than aids research progress and should be discarded.
Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels
It remains unclear how immune cells from skull bone marrow niches are recruited to the meninges. Here we report that cerebrospinal fluid (CSF) accesses skull bone marrow via dura–skull channels, and CSF proteins signal onto diverse cell types within the niches. After spinal cord injury, CSF-borne cues promote myelopoiesis and egress of myeloid cells into meninges. This reveals a mechanism of CNS-to-bone-marrow communication via CSF that regulates CNS immune responses.Mazzitelli, Smyth and colleagues show that cerebrospinal fluid gains direct access to skull bone marrow niches via dura–skull channels, allowing for the CNS context-dependent regulation of immune supply to the meninges.
Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation
The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood–brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.Liston and colleagues design a gene-delivery system to specifically target astrocytes in the central nervous system to express IL-2 and thereby expand/maintain Treg cells to suppress neuroinflammation.
Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization
Glioblastomas are aggressive primary brain cancers that recur as therapy-resistant tumors. Myeloid cells control glioblastoma malignancy, but their dynamics during disease progression remain poorly understood. Here, we employed single-cell RNA sequencing and CITE-seq to map the glioblastoma immune landscape in mouse tumors and in patients with newly diagnosed disease or recurrence. This revealed a large and diverse myeloid compartment, with dendritic cell and macrophage populations that were conserved across species and dynamic across disease stages. Tumor-associated macrophages (TAMs) consisted of microglia- or monocyte-derived populations, with both exhibiting additional heterogeneity, including subsets with conserved lipid and hypoxic signatures. Microglia- and monocyte-derived TAMs were self-renewing populations that competed for space and could be depleted via CSF1R blockade. Microglia-derived TAMs were predominant in newly diagnosed tumors, but were outnumbered by monocyte-derived TAMs following recurrence, especially in hypoxic tumor environments. Our results unravel the glioblastoma myeloid landscape and provide a framework for future therapeutic interventions. Single-cell RNA-seq and CITE-seq were used to profile the glioblastoma immune landscape in humans and mice, revealing the diversity and dynamics of tumor macrophages as the disease progresses from initial diagnosis to recurrence.
Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington’s disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.