Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,214 result(s) for "631/326/2565/2142"
Sort by:
Health and disease markers correlate with gut microbiome composition across thousands of people
Variation in the human gut microbiome can reflect host lifestyle and behaviors and influence disease biomarker levels in the blood. Understanding the relationships between gut microbes and host phenotypes are critical for understanding wellness and disease. Here, we examine associations between the gut microbiota and ~150 host phenotypic features across ~3,400 individuals. We identify major axes of taxonomic variance in the gut and a putative diversity maximum along the Firmicutes-to-Bacteroidetes axis. Our analyses reveal both known and unknown associations between microbiome composition and host clinical markers and lifestyle factors, including host-microbe associations that are composition-specific. These results suggest potential opportunities for targeted interventions that alter the composition of the microbiome to improve host health. By uncovering the interrelationships between host diet and lifestyle factors, clinical blood markers, and the human gut microbiome at the population-scale, our results serve as a roadmap for future studies on host-microbe interactions and interventions. Variation in the gut microbiome can reflect host lifestyle, behaviour, and influence blood-based biomarkers. Here the authors examine associations between the microbiota and 150 host phenotypic features in a large cohort of >3,000 individuals.
Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4
Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains. Integration of metagenomic assemblies and microbial isolate genomes improves profiling of uncharacterized species.
CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning
Advances in sequencing technologies and bioinformatics tools have dramatically increased the recovery rate of microbial genomes from metagenomic data. Assessing the quality of metagenome-assembled genomes (MAGs) is a critical step before downstream analysis. Here, we present CheckM2, an improved method of predicting genome quality of MAGs using machine learning. Using synthetic and experimental data, we demonstrate that CheckM2 outperforms existing tools in both accuracy and computational speed. In addition, CheckM2’s database can be rapidly updated with new high-quality reference genomes, including taxa represented only by a single genome. We also show that CheckM2 accurately predicts genome quality for MAGs from novel lineages, even for those with reduced genome size (for example, Patescibacteria and the DPANN superphylum). CheckM2 provides accurate genome quality predictions across bacterial and archaeal lineages, giving increased confidence when inferring biological conclusions from MAGs. This work presents CheckM2, which is a machine learning-based tool to predict genome quality of isolate, single-cell and metagenome-assembled genomes.
Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study)
Human gut microbiome is a promising target for managing type 2 diabetes (T2D). Measures altering gut microbiota like oral intake of probiotics or berberine (BBR), a bacteriostatic agent, merit metabolic homoeostasis. We hence conducted a randomized, double-blind, placebo-controlled trial with newly diagnosed T2D patients from 20 centres in China. Four-hundred-nine eligible participants were enroled, randomly assigned (1:1:1:1) and completed a 12-week treatment of either BBR-alone, probiotics+BBR, probiotics-alone, or placebo, after a one-week run-in of gentamycin pretreatment. The changes in glycated haemoglobin, as the primary outcome, in the probiotics+BBR (least-squares mean [95% CI], −1.04[−1.19, −0.89]%) and BBR-alone group (−0.99[−1.16, −0.83]%) were significantly greater than that in the placebo and probiotics-alone groups (−0.59[−0.75, −0.44]%, −0.53[−0.68, −0.37]%, P < 0.001). BBR treatment induced more gastrointestinal side effects. Further metagenomics and metabolomic studies found that the hypoglycaemic effect of BBR is mediated by the inhibition of DCA biotransformation by Ruminococcus bromii . Therefore, our study reports a human microbial related mechanism underlying the antidiabetic effect of BBR on T2D. (Clinicaltrial.gov Identifier: NCT02861261). The gut microbiome affects systemic metabolism and is a therapeutic target for type 2 diabetes. Here the authors demonstrate in a randomized controlled trial that effects of berberine, a plant alkaloid known to lower blood glucose, may be explained by the inhibition of Ruminococcus bromii mediated biotransformation of the bile acid deoxycholic acid.
Plant–microbiome interactions: from community assembly to plant health
Healthy plants host diverse but taxonomically structured communities of microorganisms, the plant microbiota, that colonize every accessible plant tissue. Plant-associated microbiomes confer fitness advantages to the plant host, including growth promotion, nutrient uptake, stress tolerance and resistance to pathogens. In this Review, we explore how plant microbiome research has unravelled the complex network of genetic, biochemical, physical and metabolic interactions among the plant, the associated microbial communities and the environment. We also discuss how those interactions shape the assembly of plant-associated microbiomes and modulate their beneficial traits, such as nutrient acquisition and plant health, in addition to highlighting knowledge gaps and future directions.In this Review, Trivedi and colleagues explore the interactions between plants, their associated microbial communities and the environment, and also discuss how those interactions shape the assembly of plant-associated microbiomes and modulate their beneficial traits.
Gut microbiota in human metabolic health and disease
Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.In this Review, Fan and Pedersen discuss how the gut microbiota and derived microbial compounds may contribute to human metabolic health and to the pathogenesis of common metabolic diseases, and highlight examples of microbiota-targeted interventions aiming to optimize metabolic health.
dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication
The number of microbial genomes sequenced each year is expanding rapidly, in part due to genome-resolved metagenomic studies that routinely recover hundreds of draft-quality genomes. Rapid algorithms have been developed to comprehensively compare large genome sets, but they are not accurate with draft-quality genomes. Here we present dRep, a program that reduces the computational time for pairwise genome comparisons by sequentially applying a fast, inaccurate estimation of genome distance, and a slow, accurate measure of average nucleotide identity. dRep achieves a 28 × increase in speed with perfect recall and precision when benchmarked against previously developed algorithms. We demonstrate the use of dRep for genome recovery from time-series datasets. Each metagenome was assembled separately, and dRep was used to identify groups of essentially identical genomes and select the best genome from each replicate set. This resulted in recovery of significantly more and higher-quality genomes compared to the set recovered using co-assembly.
Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing
Long-read Oxford Nanopore sequencing has democratized microbial genome sequencing and enables the recovery of highly contiguous microbial genomes from isolates or metagenomes. However, to obtain near-finished genomes it has been necessary to include short-read polishing to correct insertions and deletions derived from homopolymer regions. Here, we show that Oxford Nanopore R10.4 can be used to generate near-finished microbial genomes from isolates or metagenomes without short-read or reference polishing. This study demonstrates the feasibility of generating near-finished microbial genomes using only Oxford Nanopore R10.4 data from pure cultures or metagenomes.
Assessment of global health risk of antibiotic resistance genes
Antibiotic resistance genes (ARGs) have accelerated microbial threats to human health in the last decade. Many genes can confer resistance, but evaluating the relative health risks of ARGs is complex. Factors such as the abundance, propensity for lateral transmission and ability of ARGs to be expressed in pathogens are all important. Here, an analysis at the metagenomic level from various habitats (6 types of habitats, 4572 samples) detects 2561 ARGs that collectively conferred resistance to 24 classes of antibiotics. We quantitatively evaluate the health risk to humans, defined as the risk that ARGs will confound the clinical treatment for pathogens, of these 2561 ARGs by integrating human accessibility, mobility, pathogenicity and clinical availability. Our results demonstrate that 23.78% of the ARGs pose a health risk, especially those which confer multidrug resistance. We also calculate the antibiotic resistance risks of all samples in four main habitats, and with machine learning, successfully map the antibiotic resistance threats in global marine habitats with over 75% accuracy. Our novel method for quantitatively surveilling the health risk of ARGs will help to manage one of the most important threats to human and animal health. Antibiotic resistance genes (ARGs) have accelerated microbial threats to human health. Here, Zhang et al. analyze 4572 metagenomic samples to illustrate the global patterns of ARG distribution in diverse habitats. They quantitatively evaluate the health risk to humans of 2561 ARGs by integrating human accessibility, mobility, pathogenicity and clinical availability. With the machine learning, they map the antibiotic resistance threats in global marine habitats.
Best practices for analysing microbiomes
Complex microbial communities shape the dynamics of various environments, ranging from the mammalian gastrointestinal tract to the soil. Advances in DNA sequencing technologies and data analysis have provided drastic improvements in microbiome analyses, for example, in taxonomic resolution, false discovery rate control and other properties, over earlier methods. In this Review, we discuss the best practices for performing a microbiome study, including experimental design, choice of molecular analysis technology, methods for data analysis and the integration of multiple omics data sets. We focus on recent findings that suggest that operational taxonomic unit-based analyses should be replaced with new methods that are based on exact sequence variants, methods for integrating metagenomic and metabolomic data, and issues surrounding compositional data analysis, where advances have been particularly rapid. We note that although some of these approaches are new, it is important to keep sight of the classic issues that arise during experimental design and relate to research reproducibility. We describe how keeping these issues in mind allows researchers to obtain more insight from their microbiome data sets.