Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,780
result(s) for
"631/326/2565/855"
Sort by:
Soil microbiomes and one health
by
Banerjee, Samiran
,
van der Heijden, Marcel G. A
in
Animal human relations
,
Dysbacteriosis
,
Environmental health
2023
The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.One health links human, animal and environmental health, and microorganisms have a central role in this connection. In this Review, Banerjee and van der Heijden outline the central role of the soil microbiome for one health and its detrimental or beneficial effects.
Journal Article
The gut microbiota and its biogeography
2024
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.In this Review, McCallum and Tropini discuss physical and biological factors that affect microbiota biogeography and organization at different scales, starting with an overview of the whole gut at the macroscale and then zooming in to the scale of host and microbial interactions.
Journal Article
Ecology of the plastisphere
by
Zettler, Erik R
,
Mincer, Tracy J
,
Amaral-Zettler, Linda A
in
Aquatic ecosystems
,
Biofilms
,
Built environment
2020
The plastisphere, which comprises the microbial community on plastic debris, rivals that of the built environment in spanning multiple biomes on Earth. Although human-derived debris has been entering the ocean for thousands of years, microplastics now numerically dominate marine debris and are primarily colonized by microbial and other microscopic life. The realization that this novel substrate in the marine environment can facilitate microbial dispersal and affect all aquatic ecosystems has intensified interest in the microbial ecology and evolution of this biotope. Whether a ‘core’ plastisphere community exists that is specific to plastic is currently a topic of intense investigation. This Review provides an overview of the microbial ecology of the plastisphere in the context of its diversity and function, as well as suggesting areas for further research.Plastic debris in the marine environment provides a durable substrate that can be colonized by microorganisms and supports the growth of microbial biofilms. In this Review, Amaral-Zettler and colleagues explore the microbial ecology of the plastisphere in the context of its diversity and function, as well as suggesting areas for further research.
Journal Article
Priority effects in microbiome assembly
by
Jaffe, Alexander L
,
Britt, Koskella
,
Crits-Christoph Alexander
in
Assembly
,
Bacteria
,
Biology
2022
Advances in next-generation sequencing have enabled the widespread measurement of microbiome composition across systems and over the course of microbiome assembly. Despite substantial progress in understanding the deterministic drivers of community composition, the role of historical contingency remains poorly understood. The establishment of new species in a community can depend on the order and/or timing of their arrival, a phenomenon known as a priority effect. Here, we review the mechanisms of priority effects and evidence for their importance in microbial communities inhabiting a range of environments, including the mammalian gut, the plant phyllosphere and rhizosphere, soil, freshwaters and oceans. We describe approaches for the direct testing and prediction of priority effects in complex microbial communities and illustrate these with re-analysis of publicly available plant and animal microbiome datasets. Finally, we discuss the shared principles that emerge across study systems, focusing on eco-evolutionary dynamics and the importance of scale. Overall, we argue that predicting when and how current community state impacts the success of newly arriving microbial taxa is crucial for the management of microbiomes to sustain ecological function and host health. We conclude by discussing outstanding conceptual and practical challenges that are faced when measuring priority effects in microbiomes.The order and timing of the arrival (priority effects) of members of a microbiome can influence microbiome composition and function. In this Review, Debray and colleagues provide an overview of the mechanisms of priority effects, highlight examples in host-associated and environmental communities, and discuss methods to detect priority effects in microbial communities.
Journal Article
Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities
2022
Plant response to drought stress involves fungi and bacteria that live on and in plants and in the rhizosphere, yet the stability of these myco- and micro-biomes remains poorly understood. We investigate the resistance and resilience of fungi and bacteria to drought in an agricultural system using both community composition and microbial associations. Here we show that tests of the fundamental hypotheses that fungi, as compared to bacteria, are (i) more resistant to drought stress but (ii) less resilient when rewetting relieves the stress, found robust support at the level of community composition. Results were more complex using all-correlations and co-occurrence networks. In general, drought disrupts microbial networks based on significant positive correlations among bacteria, among fungi, and between bacteria and fungi. Surprisingly, co-occurrence networks among functional guilds of rhizosphere fungi and leaf bacteria were strengthened by drought, and the same was seen for networks involving arbuscular mycorrhizal fungi in the rhizosphere. We also found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations.
Fungi are expected to be more resistant and less resilient than bacteria to environmental disturbances. Here, the authors report complex responses by microbial co-occurrence networks to drought in an agricultural system, challenging simple predictions of fungal and bacterial drought responses.
Journal Article
Rhizosphere bacteriome structure and functions
2022
Microbial composition and functions in the rhizosphere—an important microbial hotspot—are among the most fascinating yet elusive topics in microbial ecology. We used 557 pairs of published 16S rDNA amplicon sequences from the bulk soils and rhizosphere in different ecosystems around the world to generalize bacterial characteristics with respect to community diversity, composition, and functions. The rhizosphere selects microorganisms from bulk soil to function as a seed bank, reducing microbial diversity. The rhizosphere is enriched in Bacteroidetes, Proteobacteria, and other copiotrophs. Highly modular but unstable bacterial networks in the rhizosphere (common for
r
-strategists) reflect the interactions and adaptations of microorganisms to dynamic conditions. Dormancy strategies in the rhizosphere are dominated by toxin–antitoxin systems, while sporulation is common in bulk soils. Functional predictions showed that genes involved in organic compound conversion, nitrogen fixation, and denitrification were strongly enriched in the rhizosphere (11–182%), while genes involved in nitrification were strongly depleted.
Understanding soil microbiota dynamics is key the development of soil-based sustainable agriculture and conservation strategies. This meta-analysis shows that bulk soil functions as a seed bank for the rhizosphere, which encompasses a rich microbiota adapted to dynamic conditions in hotpots.
Journal Article
Best practices for analysing microbiomes
by
McCall, Laura-Isobel
,
Xu, Zhenjiang Z
,
Swafford, Austin D
in
Data analysis
,
Data processing
,
Datasets
2018
Complex microbial communities shape the dynamics of various environments, ranging from the mammalian gastrointestinal tract to the soil. Advances in DNA sequencing technologies and data analysis have provided drastic improvements in microbiome analyses, for example, in taxonomic resolution, false discovery rate control and other properties, over earlier methods. In this Review, we discuss the best practices for performing a microbiome study, including experimental design, choice of molecular analysis technology, methods for data analysis and the integration of multiple omics data sets. We focus on recent findings that suggest that operational taxonomic unit-based analyses should be replaced with new methods that are based on exact sequence variants, methods for integrating metagenomic and metabolomic data, and issues surrounding compositional data analysis, where advances have been particularly rapid. We note that although some of these approaches are new, it is important to keep sight of the classic issues that arise during experimental design and relate to research reproducibility. We describe how keeping these issues in mind allows researchers to obtain more insight from their microbiome data sets.
Journal Article
Microbiota succession throughout life from the cradle to the grave
2022
Associations between age and the human microbiota are robust and reproducible. The microbial composition at several body sites can predict human chronological age relatively accurately. Although it is largely unknown why specific microorganisms are more abundant at certain ages, human microbiota research has elucidated a series of microbial community transformations that occur between birth and death. In this Review, we explore microbial succession in the healthy human microbiota from the cradle to the grave. We discuss the stages from primary succession at birth, to disruptions by disease or antibiotic use, to microbial expansion at death. We address how these successions differ by body site and by domain (bacteria, fungi or viruses). We also review experimental tools that microbiota researchers use to conduct this work. Finally, we discuss future directions for studying the microbiota’s relationship with age, including designing consistent, well-powered, longitudinal studies, performing robust statistical analyses and improving characterization of non-bacterial microorganisms.The human microbiota can undergo dramatic changes during different phases of life (for example, during colonization after birth, after disturbances or in old age). In this Review, Knight and colleagues discuss the microbiota successions that occur from the cradle to the grave.
Journal Article
Microbial diversity drives multifunctionality in terrestrial ecosystems
by
Delgado-Baquerizo, Manuel
,
Jeffries, Thomas C.
,
Reich, Peter B.
in
631/158/2445
,
631/158/670
,
631/326/2565/855
2016
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
The role of microbial diversity in ecosystems is less well understood than, for example, that of plant diversity. Analysing two independent data sets at a global and regional scale, Delgado-Baquerizo
et al
. show positive effects of soil diversity on multiple terrestrial ecosystem functions.
Journal Article
Soil microbiomes and climate change
by
Jansson, Janet K
,
Hofmockel, Kirsten S
in
Biogeochemical cycles
,
Climate change
,
Ecosystem services
2020
The soil microbiome governs biogeochemical cycling of macronutrients, micronutrients and other elements vital for the growth of plants and animal life. Understanding and predicting the impact of climate change on soil microbiomes and the ecosystem services they provide present a grand challenge and major opportunity as we direct our research efforts towards one of the most pressing problems facing our planet. In this Review, we explore the current state of knowledge about the impacts of climate change on soil microorganisms in different climate-sensitive soil ecosystems, as well as potential ways that soil microorganisms can be harnessed to help mitigate the negative consequences of climate change.
Journal Article