Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
393
result(s) for
"631/378/2607"
Sort by:
Revisiting the neurovascular unit
by
Schaeffer, Samantha
,
Iadecola, Costantino
in
631/378/1341
,
631/378/2607
,
Animal Genetics and Genomics
2021
The brain is supplied by an elaborate vascular network that originates extracranially and reaches deep into the brain. The concept of the neurovascular unit provides a useful framework to investigate how neuronal signals regulate nearby microvessels to support the metabolic needs of the brain, but it does not consider the role of larger cerebral arteries and systemic vasoactive signals. Furthermore, the recently emerged molecular heterogeneity of cerebrovascular cells indicates that there is no prototypical neurovascular unit replicated at all levels of the vascular network. Here, we examine the cellular and molecular diversity of the cerebrovascular tree and the relative contribution of systemic and brain-intrinsic factors to neurovascular function. Evidence supports the concept of a ‘neurovascular complex’ composed of segmentally diverse functional modules that implement coordinated vascular responses to central and peripheral signals to maintain homeostasis of the brain. This concept has major implications for neurovascular regulation in health and disease and for brain imaging.
Schaeffer and Iadecola review the anatomical, molecular and functional heterogeneity of the neurovasculature and highlight the coordinated interaction of factors intrinsic and extrinsic to the brain in its dynamic regulation and role in disease.
Journal Article
Multisensory gamma stimulation promotes glymphatic clearance of amyloid
2024
The glymphatic movement of fluid through the brain removes metabolic waste
1
–
4
. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer’s disease
5
–
8
. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer’s disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.
Audio and visual stimulation at 40 Hz promote cerebrospinal and interstitial fluid flux in mouse brain and result in amyloid clearance via the glymphatic system in a mouse model of Alzheimer’s disease.
Journal Article
Interoceptive rhythms in the brain
by
Engelen, Tahnée
,
Solcà, Marco
,
Tallon-Baudry, Catherine
in
631/378/1959
,
631/378/2607
,
631/378/2649
2023
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.
Engelen et al. review in animals and humans how the CNS senses cardiac, respiratory and gastric rhythmic activity, and detail the range of cognitive functions impacted, from perceptual detection up to the sense of self.
Journal Article
Perivascular spaces in the brain: anatomy, physiology and pathology
by
Mestre Humberto
,
Black, Sandra E
,
Doubal, Fergus N
in
Anatomy & physiology
,
Brain health
,
Pathology
2020
Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics. Many questions about perivascular spaces remain, but what is now clear is that normal perivascular space function is important for maintaining brain health. Here, we review perivascular space anatomy, physiology and pathology, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance.In this Review, Wardlaw et al. discuss the anatomy, physiology and pathology of perivascular spaces, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance.
Journal Article
Blood–brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment
2024
Vascular disruption has been implicated in coronavirus disease 2019 (COVID-19) pathogenesis and may predispose to the neurological sequelae associated with long COVID, yet it is unclear how blood–brain barrier (BBB) function is affected in these conditions. Here we show that BBB disruption is evident during acute infection and in patients with long COVID with cognitive impairment, commonly referred to as brain fog. Using dynamic contrast-enhanced magnetic resonance imaging, we show BBB disruption in patients with long COVID-associated brain fog. Transcriptomic analysis of peripheral blood mononuclear cells revealed dysregulation of the coagulation system and a dampened adaptive immune response in individuals with brain fog. Accordingly, peripheral blood mononuclear cells showed increased adhesion to human brain endothelial cells in vitro, while exposure of brain endothelial cells to serum from patients with long COVID induced expression of inflammatory markers. Together, our data suggest that sustained systemic inflammation and persistent localized BBB dysfunction is a key feature of long COVID-associated brain fog.
Long COVID is a major public health issue since 2020 and exhibits frequent neurological symptoms. Greene et al. propose that brain fog results from leaky brain blood vessels and a hyperactive immune system, shedding light on this phenomenon.
Journal Article
Brain capillary pericytes exert a substantial but slow influence on blood flow
2021
The majority of the brain’s vasculature is composed of intricate capillary networks lined by capillary pericytes. However, it remains unclear whether capillary pericytes influence blood flow. Using two-photon microscopy to observe and manipulate brain capillary pericytes in vivo, we find that their optogenetic stimulation decreases lumen diameter and blood flow, but with slower kinetics than similar stimulation of mural cells on upstream pial and precapillary arterioles. This slow vasoconstriction was inhibited by the clinically used vasodilator fasudil, a Rho-kinase inhibitor that blocks contractile machinery. Capillary pericytes were also slower to constrict back to baseline following hypercapnia-induced dilation, and slower to dilate towards baseline following optogenetically induced vasoconstriction. Optical ablation of single capillary pericytes led to sustained local dilation and a doubling of blood cell flux selectively in capillaries lacking pericyte contact. These data indicate that capillary pericytes contribute to basal blood flow resistance and slow modulation of blood flow throughout the brain.
Vast networks of capillaries feed the brain. Hartmann et al. show that pericyte contractility is critical for maintenance of enduring capillary tone, which sets an optimized rate and distribution of blood flow through brain capillary networks.
Journal Article
Shaping the brain vasculature in development and disease in the single-cell era
2023
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis — the formation of new blood vessels — is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the ‘neurovascular link’ defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.The CNS critically relies on an extensive and complex vasculature to function properly. In this Review, Wälchli and colleagues examine the general and CNS-specific mechanisms that underlie angiogenesis in brain development, brain vascular malformations and brain tumours.
Journal Article
Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease
2017
Key Points
Here, we review literature determining the arterial and arteriolar component of cerebral blood flow regulation.
Furthermore, we describe evidence of arterial and arteriolar blood flow control by vascular smooth muscle cells (VSMCs), astrocyte-mediated, direct neuron-mediated and endothelium-mediated regulation of VSMC tone.
Also, we discuss the capillary component of cerebral blood flow regulation.
Importantly, we highlight recent findings regarding the control of capillary blood flow by pericytes, and signalling in astrocytes and pericytes regulating capillary tone.
In addition, we examine vascular dysfunction in animal models, including amyloid-β-independent vascular changes, amyloid-β-dependent vascular changes and combined amyloid-β and vascular models.
Last, we emphasize Alzheimer disease vascular dysfunction, including cerebrovascular reactivity, cerebral blood flow reductions and neurovascular uncoupling.
Cerebral blood flow regulation is essential for normal brain function. In this Review, Kisler and colleagues examine the cellular and molecular mechanisms that underlie cerebral blood flow regulation at the arteriole and capillary level, and how neurovascular dysfunction contributes to neurodegenerative disorders such as Alzheimer disease.
Cerebral blood flow (CBF) regulation is essential for normal brain function. The mammalian brain has evolved a unique mechanism for CBF control known as neurovascular coupling. This mechanism ensures a rapid increase in the rate of CBF and oxygen delivery to activated brain structures. The neurovascular unit is composed of astrocytes, mural vascular smooth muscle cells and pericytes, and endothelia, and regulates neurovascular coupling. This Review article examines the cellular and molecular mechanisms within the neurovascular unit that contribute to CBF control, and neurovascular dysfunction in neurodegenerative disorders such as Alzheimer disease.
Journal Article
Glymphatic influx and clearance are accelerated by neurovascular coupling
2023
Functional hyperemia, also known as neurovascular coupling, is a phenomenon that occurs when neural activity increases local cerebral blood flow. Because all biological activity produces metabolic waste, we here sought to investigate the relationship between functional hyperemia and waste clearance via the glymphatic system. The analysis showed that whisker stimulation increased both glymphatic influx and clearance in the mouse somatosensory cortex with a 1.6-fold increase in periarterial cerebrospinal fluid (CSF) influx velocity in the activated hemisphere. Particle tracking velocimetry revealed a direct coupling between arterial dilation/constriction and periarterial CSF flow velocity. Optogenetic manipulation of vascular smooth muscle cells enhanced glymphatic influx in the absence of neural activation. We propose that impedance pumping allows arterial pulsatility to drive CSF in the same direction as blood flow, and we present a simulation that supports this idea. Thus, functional hyperemia boosts not only the supply of metabolites but also the removal of metabolic waste.
Holstein-Rønsbo et al. show that functional hyperemia increases glymphatic CSF inflow and clearance. Direct stimulation of vascular smooth muscle cells, in the absence of neuronal activation, similarly enhances glymphatic flow.
Journal Article
Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow
2017
Longden
et al
. demonstrate that brain capillaries function as a vast sensory web, monitoring neuronal activity by sensing K
+
and translating this into a K
IR
-channel-mediated regenerative retrograde hyperpolarizing signal that propagates to upstream arterioles to drive vasodilation and an increase in blood flow into the capillary bed.
Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular K
+
—a byproduct of neural activity—which activates capillary endothelial cell inward-rectifier K
+
(K
IR
2.1) channels to produce a rapidly propagating retrograde hyperpolarization that causes upstream arteriolar dilation, increasing blood flow into the capillary bed. Our results establish brain capillaries as an active sensory web that converts changes in external K
+
into rapid, 'inside-out' electrical signaling to direct blood flow to active brain regions.
Journal Article