Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
496 result(s) for "631/443/272"
Sort by:
Molecular determinants of nephron vascular specialization in the kidney
Although kidney parenchymal tissue can be generated in vitro, reconstructing the complex vasculature of the kidney remains a daunting task. The molecular pathways that specify and sustain functional, phenotypic and structural heterogeneity of the kidney vasculature are unknown. Here, we employ high-throughput bulk and single-cell RNA sequencing of the non-lymphatic endothelial cells (ECs) of the kidney to identify the molecular pathways that dictate vascular zonation from embryos to adulthood. We show that the kidney manifests vascular-specific signatures expressing defined transcription factors, ion channels, solute transporters, and angiocrine factors choreographing kidney functions. Notably, the ontology of the glomerulus coincides with induction of unique transcription factors, including Tbx3, Gata5, Prdm1 , and Pbx1 . Deletion of Tbx3 in ECs results in glomerular hypoplasia, microaneurysms and regressed fenestrations leading to fibrosis in subsets of glomeruli. Deciphering the molecular determinants of kidney vascular signatures lays the foundation for rebuilding nephrons and uncovering the pathogenesis of kidney disorders. The kidney is vascularized with highly specialized and zonated endothelial cells that are essential for its filtration function. Here, Barry et al. provide a single-cell RNA sequencing analysis of the kidney vasculature that highlights its transcriptional heterogeneity and uncovers pathways important for its development and function.
Evaluation of glomerular sirtuin-1 and claudin-1 in the pathophysiology of nondiabetic focal segmental glomerulosclerosis
Focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome, which is characterized by podocyte injury. Given that the pathophysiology of nondiabetic glomerulosclerosis is poorly understood and targeted therapies to prevent glomerular disease are lacking, we decided to investigate the tight junction protein claudin-1 and the histone deacetylase sirtuin-1 (SIRT1), which are known to be involved in podocyte injury. For this purpose, we first examined SIRT1, claudin-1 and podocin expression in kidney biopsies from patients diagnosed with nondiabetic FSGS and found that upregulation of glomerular claudin-1 accompanies a significant reduction in glomerular SIRT1 and podocin levels. From this, we investigated whether a small molecule activator of SIRT1, SRT1720, could delay the onset of FSGS in an animal model of adriamycin (ADR)-induced nephropathy; 14 days of treatment with SRT1720 attenuated glomerulosclerosis progression and albuminuria, prevented transcription factor Wilms tumor 1 (WT1) downregulation and increased glomerular claudin-1 in the ADR + SRT1720 group. Thus, we evaluated the effect of ADR and/or SRT1720 in cultured mouse podocytes. The results showed that ADR [1 µM] triggered an increase in claudin-1 expression after 30 min, and this effect was attenuated by pretreatment of podocytes with SRT1720 [5 µM]. ADR [1 µM] also led to changes in the localization of SIRT1 and claudin-1 in these cells, which could be associated with podocyte injury. Although the use of specific agonists such as SRT1720 presents some benefits in glomerular function, their underlying mechanisms still need to be further explored for therapeutic use. Taken together, our data indicate that SIRT1 and claudin-1 are relevant for the pathophysiology of nondiabetic FSGS.
The therapeutic potential of apelin in kidney disease
Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin–angiotensin–aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.The apelin system is a broad regulator of physiology that has beneficial cardiovascular and renal effects. This Review focuses on the role of this system in kidney and cardiovascular health and disease and its potential as a therapeutic target.
MicroRNAs in kidney injury and disease
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.In this Review, the authors provide an overview of the roles of miRNAs in the development of chronic kidney disease, acute kidney injury and allograft injury. They also discuss the utilization of miRNAs as biomarkers and their potential as therapeutic targets in kidney disease.
Intravital imaging of real-time endogenous actin dysregulation in proximal and distal tubules at the onset of severe ischemia-reperfusion injury
Severe renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses using exogenous probes after the fact. Here we report the successful real-time visualization of actin cytoskeletal alterations in live proximal and distal tubules that arise at the onset of severe IRI. To achieve this, we induced fluorescent actin expression in these segments in rats with hydrodynamic gene delivery (HGD). Using intravital two-photon microscopy we then tracked and quantified endogenous actin dysregulation that occurred by subjecting these animals to 60 min of bilateral renal ischemia. Rapid (by 1-h post-reperfusion) and significant (up to 50%) declines in actin content were observed. The decline in fluorescence within proximal tubules was significantly greater than that observed in distal tubules. Actin-based fluorescence was not recovered during the measurement period extending 24 h post-reperfusion. Such injury decimated the renal architecture, in particular, actin brush borders, and hampered the reabsorptive and filtrative capacities of these tubular compartments. Thus, for the first time, we show that the combination of HGD and intravital microscopy can serve as an experimental tool to better understand how IRI modifies the cytoskeleton in vivo and provide an extension to current histopathological techniques.
Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography
Imaging intact human organs from the organ to the cellular scale in three dimensions is a goal of biomedical imaging. To meet this challenge, we developed hierarchical phase-contrast tomography (HiP-CT), an X-ray phase propagation technique using the European Synchrotron Radiation Facility (ESRF)’s Extremely Brilliant Source (EBS). The spatial coherence of the ESRF-EBS combined with our beamline equipment, sample preparation and scanning developments enabled us to perform non-destructive, three-dimensional (3D) scans with hierarchically increasing resolution at any location in whole human organs. We applied HiP-CT to image five intact human organ types: brain, lung, heart, kidney and spleen. HiP-CT provided a structural overview of each whole organ followed by multiple higher-resolution volumes of interest, capturing organotypic functional units and certain individual specialized cells within intact human organs. We demonstrate the potential applications of HiP-CT through quantification and morphometry of glomeruli in an intact human kidney and identification of regional changes in the tissue architecture in a lung from a deceased donor with coronavirus disease 2019 (COVID-19).Hierarchical phase-contrast tomography (HiP-CT) enables multiscale imaging of any region within an intact human organ down to cellular resolution. HiP-CT of five organ types revealed 3D morphological features in healthy and diseased tissue.
Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors
Diabetic kidney disease is the leading cause of kidney failure worldwide; in the USA, it accounts for over 50% of individuals entering dialysis or transplant programmes. Unlike other complications of diabetes, the prevalence of diabetic kidney disease has failed to decline over the past 30 years. Hyperglycaemia is the primary aetiological factor responsible for the development of diabetic kidney disease. Once hyperglycaemia becomes established, multiple pathophysiological disturbances, including hypertension, altered tubuloglomerular feedback, renal hypoxia, lipotoxicity, podocyte injury, inflammation, mitochondrial dysfunction, impaired autophagy and increased activity of the sodium–hydrogen exchanger, contribute to progressive glomerular sclerosis and the decline in glomerular filtration rate. The quantitative contribution of each of these abnormalities to the progression of diabetic kidney disease, as well as their role in type 1 and type 2 diabetes mellitus, remains to be determined. Sodium–glucose co-transporter 2 (SGLT2) inhibitors have a beneficial impact on many of these pathophysiological abnormalities; however, as several pathophysiological disturbances contribute to the onset and progression of diabetic kidney disease, multiple agents used in combination will likely be required to slow the progression of disease effectively.Multiple pathophysiological disturbances contribute to the onset and progression of diabetic kidney disease (DKD). This Review describes these pathogenic processes and discusses the ability of sodium–glucose co-transporter 2 (SGLT2) inhibitors to correct or improve many of these processes, which are likely to underlie the ability of these agents to slow progression of established diabetic kidney disease.
Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration
The kidney has tremendous capacity to repair after acute injury, however, pathways guiding adaptive and fibrotic repair are poorly understood. We developed a model of adaptive and fibrotic kidney regeneration by titrating ischemic injury dose. We performed detailed biochemical and histological analysis and profiled transcriptomic changes at bulk and single-cell level (> 110,000 cells) over time. Our analysis highlights kidney proximal tubule cells as key susceptible cells to injury. Adaptive proximal tubule repair correlated with fatty acid oxidation and oxidative phosphorylation. We identify a specific maladaptive/profibrotic proximal tubule cluster after long ischemia, which expresses proinflammatory and profibrotic cytokines and myeloid cell chemotactic factors. Druggability analysis highlights pyroptosis/ferroptosis as vulnerable pathways in these profibrotic cells. Pharmacological targeting of pyroptosis/ferroptosis in vivo pushed cells towards adaptive repair and ameliorates fibrosis. In summary, our single-cell analysis defines key differences in adaptive and fibrotic repair and identifies druggable pathways for pharmacological intervention to prevent kidney fibrosis. After acute injury, kidneys either successfully repair/regenerate or become fibrotic. Here the authors use scRNA-seq to study adaptive/maladaptive kidney regeneration and identify proinflammatory/fibrotic proximal tubule cells with pharmacologically targetable pyroptosis/ferroptosis signatures.
Renal metabolism and hypertension
Hypertension is a leading risk factor for disease burden worldwide. The kidneys, which have a high specific metabolic rate, play an essential role in the long-term regulation of arterial blood pressure. In this review, we discuss the emerging role of renal metabolism in the development of hypertension. Renal energy and substrate metabolism is characterized by several important and, in some cases, unique features. Recent advances suggest that alterations of renal metabolism may result from genetic abnormalities or serve initially as a physiological response to environmental stressors to support tubular transport, which may ultimately affect regulatory pathways and lead to unfavorable cellular and pathophysiological consequences that contribute to the development of hypertension. Hypertension is one of the most important risk factors for cardiovascular disease. The kidneys, which have a very high metabolic rate, play a fundamental role in blood pressure regulation. In this review, the authors discuss recent studies on the role of renal metabolism in the development of hypertension.
Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection
Kidney damage varies according to the primary insult. Different aetiologies of acute kidney injury (AKI), including kidney ischaemia, exposure to nephrotoxins, dehydration or sepsis, are associated with characteristic patterns of damage and changes in gene expression, which can provide insight into the mechanisms that lead to persistent structural and functional damage. Early morphological alterations are driven by a delicate balance between energy demand and oxygen supply, which varies considerably in different regions of the kidney. The functional heterogeneity of the various nephron segments is reflected in their use of different metabolic pathways. AKI is often linked to defects in kidney oxygen supply, and some nephron segments might not be able to shift to anaerobic metabolism under low oxygen conditions or might have remarkably low basal oxygen levels, which enhances their vulnerability to damage. Here, we discuss why specific kidney regions are at particular risk of injury and how this information might help to delineate novel routes for mitigating injury and avoiding permanent damage. We suggest that the physiological heterogeneity of the kidney should be taken into account when exploring novel renoprotective strategies, such as improvement of kidney tissue oxygenation, stimulation of hypoxia signalling pathways and modulation of cellular energy metabolism.In this Review, the authors examine the physiological heterogeneity of different kidney compartments and consider how the local oxygen supply and the capacity for metabolic adaptation of different nephron segments might influence their response to changes in oxygen availability and their susceptibility to injury.