Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
722
result(s) for
"631/443/319/333"
Sort by:
Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease
2018
Brown fat is emerging as an interesting and promising target for therapeutic intervention in obesity and metabolic disease. Activation of brown fat in humans is associated with marked improvement in metabolic parameters such as levels of free fatty acids and insulin sensitivity. Skeletal muscle is another important organ for thermogenesis, with the capacity to induce energy-consuming futile cycles. In this Review, we focus on how these two major thermogenic organs -- brown fat and muscle -- act and cooperate to maintain normal body temperature. Moreover, in the light of disease-relevant mechanisms, we explore the molecular pathways that regulate thermogenesis in brown fat and muscle. Brown adipocytes possess a unique cellular mechanism to convert chemical energy into heat: uncoupling protein 1 (UCP1), which can short-circuit the mitochondrial proton gradient. However, recent research demonstrates the existence of several other energy-expending 'futile' cycles in both adipocytes and muscle, such as creatine and calcium cycling. These mechanisms can complement or even substitute for UCP1-mediated thermogenesis. Moreover, they expand our view of cold-induced thermogenesis from a special feature of brown adipocytes to a more general physiological principle. Finally, we discuss how thermogenic mechanisms can be exploited to expend energy and hence offer new therapeutic opportunities.
Journal Article
The multifaceted contributions of mitochondria to cellular metabolism
by
Spinelli, Jessica B.
,
Haigis, Marcia C.
in
631/443/319/1557
,
631/443/319/1642
,
631/443/319/333/1465
2018
Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. In this Review, we discuss how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management. We address the importance of these roles in both normal physiology and in disease.
Journal Article
Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction
by
Monzel, Anna S.
,
Picard, Martin
,
Enríquez, José Antonio
in
631/443/319/333
,
631/80/642/333
,
Biology
2023
Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms ‘mitochondrial function’ and ‘mitochondrial dysfunction’ are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.
The authors of this Perspective argue that the commonly used terms ‘mitochondrial function’ and ‘mitochondrial dysfunction’ do not do justice to the diverse mitochondrial features, activities, functions and behaviours within cells, and thus call for the field to adopt more specific terminology in the context of mitochondrial biology.
Journal Article
Mitochondrial metabolism and cancer
by
Pedro, José Manuel Bravo-San
,
Filigheddu, Nicoletta
,
Porporato, Paolo Ettore
in
631/443/319/333
,
692/4028/67/1059/602
,
692/4028/67/2327
2018
Glycolysis has long been considered as the major metabolic process for energy production and anabolic growth in cancer cells. Although such a view has been instrumental for the development of powerful imaging tools that are still used in the clinics, it is now clear that mitochondria play a key role in oncogenesis. Besides exerting central bioenergetic functions, mitochondria provide indeed building blocks for tumor anabolism, control redox and calcium homeostasis, participate in transcriptional regulation, and govern cell death. Thus, mitochondria constitute promising targets for the development of novel anticancer agents. However, tumors arise, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system, and many immunological functions rely on intact mitochondrial metabolism. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.
Journal Article
Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice
2023
Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation.
Lcn2
deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice.
Lcn2
KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally,
Lcn2
deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.
Mitochondrial function is essential for energy metabolism in brown adipocytes. Here, the authors show that LCN2 plays a critical role as a phosphatidic acid binding protein in phospholipid acyl chain remodeling and mitochondrial bioenergetics, influencing signaling pathway activation.
Journal Article
Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function
2021
The relationship between the age-associated decline in mitochondrial function and its effect on skeletal muscle physiology and function remain unclear. In the current study, we examined to what extent physical activity contributes to the decline in mitochondrial function and muscle health during aging and compared mitochondrial function in young and older adults, with similar habitual physical activity levels. We also studied exercise-trained older adults and physically impaired older adults. Aging was associated with a decline in mitochondrial capacity, exercise capacity and efficiency, gait stability, muscle function, and insulin sensitivity, even when maintaining an adequate daily physical activity level. Our data also suggest that a further increase in physical activity level, achieved through regular exercise training, can largely negate the effects of aging. Finally, mitochondrial capacity correlated with exercise efficiency and insulin sensitivity. Together, our data support a link between mitochondrial function and age-associated deterioration of skeletal muscle.
Aging is associated with a progressive loss of muscle function. Here the authors characterize mitochondrial capacity and muscle function in young and older adults with similar habitual physical activity and also compared to older adults with exercise training or with physical impairment.
Journal Article
Lactate in the brain: from metabolic end-product to signalling molecule
2018
Lactate in the brain has long been associated with ischaemia; however, more recent evidence shows that it can be found there under physiological conditions. In the brain, lactate is formed predominantly in astrocytes from glucose or glycogen in response to neuronal activity signals. Thus, neurons and astrocytes show tight metabolic coupling. Lactate is transferred from astrocytes to neurons to match the neuronal energetic needs, and to provide signals that modulate neuronal functions, including excitability, plasticity and memory consolidation. In addition, lactate affects several homeostatic functions. Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the 'homeostatic tone' of the nervous system.
Journal Article
Mitochondria as a therapeutic target for common pathologies
2018
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Journal Article
Mechanisms of muscle atrophy and hypertrophy: implications in health and disease
2021
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing.
Loss of muscle mass is associated with ageing and with a number of diseases such as cancer. Here, the authors review the signaling pathways that modulate protein synthesis and degradation and gain or loss of muscle mass, and discuss therapeutic implications and future directions for the field.
Journal Article