Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34,827 result(s) for "631/45"
Sort by:
Rational design, synthesis, in vitro, and in-silico studies of pyrazole‑phthalazine hybrids as new α‑glucosidase inhibitors
This paper describes the design, development, synthesis, in silico, and in vitro evaluation of fourteen novel heterocycle hybrids as inhibitors of the α-glucosidase enzyme. The primary aim of this study was to explore the potential of novel pyrazole-phthalazine hybrids as selective inhibitors of α-glucosidase, an enzyme involved in carbohydrate metabolism, which plays a key role in the management of type 2 diabetes. The rationale for this study stems from the need for new, more effective inhibitors of α-glucosidase with improved efficacy and safety profiles compared to currently available therapies like Acarbose. The synthesized compounds were tested against the yeast α-glucosidase enzyme and showed significantly higher activity than the standard drug Acarbose. The IC50 values ranged from 13.66 ± 0.009 to 494 ± 0.006 μM, compared to the standard drug Acarbose (IC50 = 720.18 ± 0.008). The most effective α-glucosidase inhibitor, 2-acetyl-1-(3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-3-methyl-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (8l) , was identified through a kinetic binding study that yielded an inhibition constant, Ki, of 34.75 µM. All of the pharmacophoric features used in the hybrid design were found to be involved in the interaction with the enzyme’s active site, as expected. Moreover, molecular dynamic simulation and the absorption, distribution, metabolism, and excretion (ADME) have been performed.
Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides
Alzheimer’s disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods—mainly spectroscopy and imaging techniques—to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1–40), Aβ(1–40)(H6A, H13A, H14A), Aβ(4–40), and Aβ(1–42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil–coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Stability and functional consequences of disulfide bond engineering in Aspergillus flavus uricase
Disulfide bond engineering is a promising strategy for enhancing the stability and functional lifespan of enzymes in therapeutic and industrial applications. In this study, we applied computational modeling to introduce interchain disulfide bonds in Aspergillus flavus uricase to increase its stability without compromising catalytic efficiency. Six uricase muteins were engineered with targeted disulfide bonds at positions selected based on energetic frustration, structural integrity, and tunnel profiling analyses. By employing frustration density mapping, Root Mean Square Fluctuation (RMSF) profiling, and tunnel analysis, we evaluated the structural stability, flexibility, and substrate accessibility of each variant. Our findings revealed that muteins with disulfide bonds between residues such as Ala6-Cys290 and Ser119-Cys220 exhibited significant reductions in highly frustrated regions, enhancing the enzyme’s structural resilience. RMSF analysis indicated decreased local flexibility near disulfide sites, contributing to increased stability. Tunnel profiling further demonstrated that muteins with strategically placed disulfide bonds maintained favorable substrate access and low-energy barriers, critical for catalytic turnover. These results underscore the potential of targeted disulfide bond engineering for optimizing enzyme stability, offering valuable insights for the development of stable, high-performance biocatalysts suitable for therapeutic and industrial use.
Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN)2CO group during maturation of E. coli NiFe-hydrogenase 2
[NiFe]-hydrogenases activate dihydrogen. Like all [NiFe]-hydrogenases, hydrogenase 2 of Escherichia coli has a bimetallic NiFe(CN) 2 CO cofactor in its catalytic subunit. Biosynthesis of the Fe(CN) 2 CO group of the [NiFe]-cofactor occurs on a distinct scaffold complex comprising the HybG and HypD accessory proteins. HybG is a member of the HypC-family of chaperones that confers specificity towards immature hydrogenase catalytic subunits during transfer of the Fe(CN) 2 CO group. Using native mass spectrometry of an anaerobically isolated HybG–HypD complex we show that HybG carries the Fe(CN) 2 CO group. Our results also reveal that only HybG, but not HypD, interacts with the apo-form of the catalytic subunit. Finally, HybG was shown to have two distinct, and apparently CO 2 -related, covalent modifications that depended on the presence of the N -terminal cysteine residue on the protein, possibly representing intermediates during Fe(CN) 2 CO group biosynthesis. Together, these findings suggest that the HybG chaperone is involved in both biosynthesis and delivery of the Fe(CN) 2 CO group to its target protein. HybG is thus suggested to shuttle between the assembly complex and the apo-catalytic subunit. This study provides new insights into our understanding of how organometallic cofactor components are assembled on a scaffold complex and transferred to their client proteins.
Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease
COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease. The SARS-CoV-2 main protease is an important target for the development of COVID-19 therapeutics. Here, the authors combine X-ray crystallography and mass spectrometry and performed a large scale fragment screening campaign, which yielded 96 liganded structures of this essential viral protein that are of interest for further drug development efforts.
R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation
G-quadruplex (G4) is a noncanonical secondary structure of DNA or RNA which can enhance or repress gene expression, yet the underlying molecular mechanism remains uncertain. Here we show that when positioned downstream of transcription start site, the orientation of potential G4 forming sequence (PQS), but not the sequence alters transcriptional output. Ensemble in vitro transcription assays indicate that PQS in the non-template increases mRNA production rate and yield. Using sequential single molecule detection stages, we demonstrate that while binding and initiation of T7 RNA polymerase is unchanged, the efficiency of elongation and the final mRNA output is higher when PQS is in the non-template. Strikingly, the enhanced elongation arises from the transcription-induced R-loop formation, which in turn generates G4 structure in the non-template. The G4 stabilized R-loop leads to increased transcription by a mechanism involving successive rounds of R-loop formation. G-quadruplex (G4) forming sequences are highly enriched in the human genome and function as important regulators of diverse range of biological processes. Here the authors show that while G4 structures on template strand block transcription, folding on the non-template strand enhances transcription by means of successive R-loop formation.
Periplasmic chitooligosaccharide-binding protein requires a three-domain organization for substrate translocation
Periplasmic solute-binding proteins (SBPs) specific for chitooligosaccharides, (GlcNAc) n (n = 2, 3, 4, 5 and 6), are involved in the uptake of chitinous nutrients and the negative control of chitin signal transduction in Vibrios . Most translocation processes by SBPs across the inner membrane have been explained thus far by two-domain open/closed mechanism. Here we propose three-domain mechanism of the (GlcNAc) n translocation based on experiments using a recombinant Vc CBP, SBP specific for (GlcNAc) n from Vibrio cholerae . X-ray crystal structures of unliganded or (GlcNAc) 3 -liganded Vc CBP solved at 1.2–1.6 Å revealed three distinct domains, the Upper1, Upper2 and Lower domains for this protein. Molecular dynamics simulation indicated that the motions of the three domains are independent and that in the (GlcNAc) 3 -liganded state the Upper2/Lower interface fluctuated more intensively, compared to the Upper1/Lower interface. The Upper1/Lower interface bound two GlcNAc residues tightly, while the Upper2/Lower interface appeared to loosen and release the bound sugar molecule. The three-domain mechanism proposed here was fully supported by binding data obtained by thermal unfolding experiments and ITC, and may be applicable to other translocation systems involving SBPs belonging to the same cluster.
Structure–function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo. We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo.
Structure of complete Pol II–DSIF–PAF–SPT6 transcription complex reveals RTF1 allosteric activation
Transcription by RNA polymerase II (Pol II) is carried out by an elongation complex. We previously reported an activated porcine Pol II elongation complex, EC*, encompassing the human elongation factors DSIF, PAF1 complex (PAF) and SPT6. Here we report the cryo-EM structure of the complete EC* that contains RTF1, a dissociable PAF subunit critical for chromatin transcription. The RTF1 Plus3 domain associates with Pol II subunit RPB12 and the phosphorylated C-terminal region of DSIF subunit SPT5. RTF1 also forms four α-helices that extend from the Plus3 domain along the Pol II protrusion and RPB10 to the polymerase funnel. The C-terminal ‘fastener’ helix retains PAF and is followed by a ‘latch’ that reaches the end of the bridge helix, a flexible element of the Pol II active site. RTF1 strongly stimulates Pol II elongation, and this requires the latch, possibly suggesting that RTF1 activates transcription allosterically by influencing Pol II translocation.Cryo-EM elucidation of a fully reconstituted Pol II–DSF–PAF1–SPT6 elongation complex defines the position of PAF1 subunit RTF1 and reveals contacts with the Pol II bridge helix that may allosterically stimulate transcription elongation.
Evolved Fusarium oxysporum laccase expressed in Saccharomyces cerevisiae
Fusarium oxysporum laccase was functionally expressed in Saccharomyces cerevisiae and engineered towards higher expression levels and higher reactivity towards 2,6-dimethoxyphenol, that could be used as a mediator for lignin modification. A combination of classical culture optimization and protein engineering led to around 30 times higher activity in the culture supernatant. The winner mutant exhibited three times lower Km, four times higher kcat and ten times higher catalytic efficiency than the parental enzyme. The strategy for laccase engineering was composed of a combination of random methods with a rational approach based on QM/MM MD studies of the enzyme complex with 2,6-dimethoxyphenol. Laccase mediator system with 2,6-dimethoxyphenol caused fulvic acids release from biosolubilized coal.