Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
568 result(s) for "631/45/72"
Sort by:
Box–Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin
A natural low-methoxyl pectin (LAHP), was extracted with oxalic acid solution from dried heads of sunflower ( Helianthus annuus L.). The single-factor experiments and response surface methodology (RSM) were used to optimize LAHP extraction conditions. The extraction yield of LAHP was 18.83 ± 0.21%, and the uronic acid content was 85.43 ± 2.9% obtained under the optimized conditions (temperature of 96 °C, time of 1.64 h, oxalic acid concentration of 0.21%). Experimentally obtained values were in agreement with those predicted by RSM model, indicating suitability of the employed model and the success of RSM in optimizing the extraction conditions. LAHP has been characterized by ash content, degree of esterification (DE), galacturonic acid (GalA) content, molecular weight and intrinsic viscosity meanwhile commercial low-methoxyl pectin (CLMP) as comparison. This study finds out a potential source of natural LMP which expands the application scope of sunflower heads. It is an efficient reuse of waste resources and provides a novel thought to explore the natural resources for food and pharmaceutical applications.
Synergistic effects of laccase and pectin on the color changes and functional properties of meat analogs containing beet red pigment
The widening gap between current supply of meat and its future demand has increased the need to produce plant-based meat analogs. Despite ongoing technical developments, one of the unresolved challenges of plant-based meat analogs is to safely and effectively imitate the appearance of raw and cooked animal-based meat, especially the color. This study aimed to develop a more effective and safe browning system for beet red (BR) in plant-based meat analog patties using laccase (LC) and sugar beet pectin (SBP). First, we investigated the synergistic effects of SBP and LC on BR decolorization of meat analog patties. We discovered that the red tones of LC-treated patties containing BR and SBP were remarkably browned after grilling, compared to patties that did not contain SBP. Notably, this color change by LC + SBP was similar to that of beef patties. Additionally, the hardness of LC-treated meat analog patties containing BR was higher than those that did not contain BR. Interestingly, the presence of SBP and LC enhanced the browning reaction and functional properties of meat analogs containing BR. This is the first report on a browning system for meat analogs containing BR using enzymatic methods to the best of our knowledge.
Exploring the hemicellulolytic properties and safety of Bacillus paralicheniformis as stepping stone in the use of new fibrolytic beneficial microbes
Bacillus strains from the Moroccan Coordinated Collections of Microorganisms (CCMM) were characterised and tested for fibrolytic function and safety properties that would be beneficial for maintaining intestinal homeostasis, and recommend beneficial microbes in the field of health promotion research. Forty strains were investigated for their fibrolytic activities towards complex purified polysaccharides and natural fibres representative of dietary fibres (DFs) entering the colon for digestion. We demonstrated hemicellulolytic activities for nine strains of Bacillus aerius , re-identified as Bacillus paralicheniformis and Bacillus licheniformis , using xylan, xyloglucan or lichenan as purified polysaccharides, and orange, apple and carrot natural fibres, with strain- and substrate-dependent production of glycoside hydrolases (GHs). Our combined methods, based on enzymatic assays, secretome, and genome analyses, highlighted the hemicellulolytic activities of B. paralicheniformis and the secretion of specific glycoside hydrolases, in particular xylanases, compared to B. licheniformis . Genomic features of these strains revealed a complete set of GH genes dedicated to the degradation of various polysaccharides from DFs, including cellulose, hemicellulose and pectin, which may confer on the strains the ability to digest a variety of DFs. Preliminary experiments on the safety and immunomodulatory properties of B. paralicheniformis fibrolytic strains were evaluated in light of applications as beneficial microbes' candidates for health improvement. B. paralicheniformis CCMM B969 was therefore proposed as a new fibrolytic beneficial microbe candidate.
Response of chloroplast pigments, sugars and phenolics of sweet cherry leaves to chilling
The aim of the present study was to evaluate the effect of post-flowering chilling of sweet cherry ( Prunus avium L.) on the content of biochemical parameters in the leaf (chloroplast pigments, sugars and phenolics). The effect of chilling was investigated in two experiments. Potted 2-year-old trees of cv. 'Grace Star' and 'Schneiders' were exposed to one, two or three consecutive overnight chillings at an average air temperature of 4.7 °C (Experiment I), but in the following year only trees of 'Grace Star' were chilled at 2.2 °C (Experiment II), 3 to 7 weeks after flowering. The analysis of the biochemical parameters was performed by high performance liquid chromatography combined with electrospray ionization mass spectrometry. Chilling at 4.7 °C caused little or no stress, while 2.2 °C induced more intense stress with increased zeaxanthin, sugar and phenolic content in leaves, while exposure of trees to higher temperatures and closer to flowering showed no changes. Two or three consecutive overnight chilling periods increased the phenolic content and enhanced the accumulation of zeaxanthin in the leaves. Sucrose, sorbitol, fructose, total sugar, and total flavonoid content in leaves increased within 48 h after chilling. Zeaxanthin epoxidized within 24 h after one and 48 h after one and two consecutive overnight chillings.
Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince
This paper presents characterization of healthy potential new sources of functional constituents with reference to basic plant sources. In this study, the phenolics, triterpene, isoprenoids (chlorophylls and carotenoids), amino acids, minerals, sugars and organic acids of different cultivars of pome species—apple, pear, quince—leaves vs. fruits and their enzymatic in vitro enzyme inhibition of hyperglycemic (α-glucosidase, α-amylase), obesity (pancreatic lipase), cholinesterase (acetylcholinesterase, butylcholinesterase), inflammatory (15-LOX, COX-1 and -2) and antioxidant capacity (ORAC, FRAP, ABTS) were evaluated. Leaves of pome species as a new plant sources were characterized by higher content of bioactive and nutritional compounds than basic fruits. The dominant fraction for quince, pear, and apple fruits was polymeric procyanidins. In quince and pear leaves flavan-3-ols, and in apple dihydrochalcones dominated. Triterpene was present in equal content in leaves and fruits. Leaves are excellent sources of amino acids and minerals (especially Ca, Mg, Fe, and K), with high content of organic acids and low content of sugars compared to fruits of pome species. Leaves of apples and pears most effectively inhibited COX-1, COX-2, α-amylase, and α-glucosidase enzyme but quince leaves showed the most effective inhibition of pancreatic lipase, AChE and BuChE, 15-LOX, and antioxidant capacity, which particularly correlated with bioactive compounds. Present study shows that leaves are promising sources of valuable compounds and may be used to produce functional foods as well as for medical purposes.
GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling
This study aimed to enhance natural gamma aminobutyric acid (GABA) production in yoghurt by the addition of simple sugars and commercial prebiotics without the need for pyridoxal 5′-phosphate (PLP) cofactor. The simple sugars induced more GABA production (42.83–58.56 mg/100 g) compared to the prebiotics (34.19–40.51 mg/100 g), with glucose promoting the most GABA production in yoghurt (58.56 mg/100 g) surpassing the control sample with added PLP (48.01 mg/100 g). The yoghurt prepared with glucose also had the highest probiotic count (9.31 log CFU/g). Simulated gastrointestinal digestion of this GABA-rich yoghurt showed a non-significant reduction in GABA content and probiotic viability, demonstrating the resistance towards a highly acidic environment (pH 1.2). Refrigerated storage up to 28 days improved GABA production (83.65 mg/100 g) compared to fresh GABA-rich yoghurt prepared on day 1. In conclusion, the addition of glucose successfully mitigates the over-use of glutamate and omits the use of PLP for increased production of GABA in yoghurt, offering an economical approach to produce a probiotic-rich dairy food with potential anti-hypertensive effects.
Nitric oxide modulates UDP-evoked cytosolic transients via P2Y6 purinoceptor stimulation
Glycosaminoglycans (GAGs) and proteoglycans are key components of the extracellular matrix, playing structural and regulatory roles in various biological processes. GAGs are involved in modulating endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. CHO-745 cells, deficient in GAGs, produce significantly higher NO levels than wild-type CHO-K1 cells. Since NO is crucial for vascular function, this study investigated how NO overproduction in GAG-deficient cells affects cytosolic Ca 2 ⁺ transients triggered by P2Y6 receptor (P2Y6R) activation with UDP, a vascular tone regulator. Results showed that GAG-deficient CHO-745 cells experience basal oxidative and nitrosative stress. Although integrin expression was similar, the RGD peptide increased NO production in CHO-K1 but not in CHO-745. P2Y6R activation involved phospholipase C and endoplasmic reticulum (ER) Ca 2 ⁺ stores, processes dependent on surface GAGs. Additionally, store-operated Ca 2 ⁺ entry and Na⁺/Ca 2 ⁺ exchanger (NCX) were involved in UDP-induced Ca 2 ⁺ responses, influenced by NO levels. Excess NO also contributed to ER stress and cell death, particularly in the absence of GAGs. Overall, GAG deficiency leads to oxidative stress, disrupted Ca 2 ⁺ homeostasis, ER stress, and apoptosis, underscoring the importance of GAGs in purinergic signaling and vascular physiology.
The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans
Carbohydrates — namely glycans — decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas — selectins, Siglecs and glycan-targeted antibodies — this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.Numerous proteins and lipids are covered in glycans, which affects the way these molecules interact. In this Review, Smith and Bertozzi discuss therapies targeting proteins that recognize glycosylation, namely the selectins and Siglecs, as well as glycan-targeted antibodies that have entered the clinic or are in development. They provide their perspectives on the future of glycobiology.
Bacteroidetes use thousands of enzyme combinations to break down glycans
Unlike proteins, glycan chains are not directly encoded by DNA, but by the specificity of the enzymes that assemble them. Theoretical calculations have proposed an astronomical number of possible isomers (> 10 12 hexasaccharides) but the actual diversity of glycan structures in nature is not known. Bacteria of the Bacteroidetes phylum are considered primary degraders of polysaccharides and they are found in all ecosystems investigated. In Bacteroidetes genomes, carbohydrate-degrading enzymes (CAZymes) are arranged in gene clusters termed polysaccharide utilization loci (PULs). The depolymerization of a given complex glycan by Bacteroidetes PULs requires bespoke enzymes; conversely, the enzyme composition in PULs can provide information on the structure of the targeted glycans. Here we group the 13,537 PULs encoded by 964 Bacteroidetes genomes according to their CAZyme composition. We find that collectively Bacteroidetes have elaborated a few thousand enzyme combinations for glycan breakdown, suggesting a global estimate of diversity of glycan structures much smaller than the theoretical one. Bacteroidetes genomes contain polysaccharide utilization loci (PULs), each of which encodes enzymes for the breakdown of one particular glycan. By analyzing the enzyme composition of 13,537 PULs, the authors suggest that the natural glycan diversity is orders of magnitude lower than previously proposed.
Glycan recognition in globally dominant human rotaviruses
Rotaviruses (RVs) cause life-threatening diarrhea in infants and children worldwide. Recent biochemical and epidemiological studies underscore the importance of histo-blood group antigens (HBGA) as both cell attachment and susceptibility factors for the globally dominant P[4], P[6], and P[8] genotypes of human RVs. How these genotypes interact with HBGA is not known. Here, our crystal structures of P[4] and a neonate-specific P[6] VP8*s alone and in complex with H-type I HBGA reveal a unique glycan binding site that is conserved in the globally dominant genotypes and allows for the binding of ABH HBGAs, consistent with their prevalence. Remarkably, the VP8* of P[6] RVs isolated from neonates displays subtle structural changes in this binding site that may restrict its ability to bind branched glycans. This provides a structural basis for the age-restricted tropism of some P[6] RVs as developmentally regulated unbranched glycans are more abundant in the neonatal gut. Human rotaviruses (RV) bind to histo-blood group antigens (HBGA) for attachment, but how different viral genotypes interact with HBGA isn’t known. Here, Hu et al . report crystal structures of a prevalent and a neonate-specific RV in complex with HBGA and provide insights into glycan recognition and age-restricted tropism of RVs.