Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
417
result(s) for
"631/57/2271"
Sort by:
Understanding the diversity of membrane lipid composition
2018
Cellular membranes are formed from a chemically diverse set of lipids present in various amounts and proportions. A high lipid diversity is universal in eukaryotes and is seen from the scale of a membrane leaflet to that of a whole organism, highlighting its importance and suggesting that membrane lipids fulfil many functions. Indeed, alterations of membrane lipid homeostasis are linked to various diseases. While many of their functions remain unknown, interdisciplinary approaches have begun to reveal novel functions of lipids and their interactions. We are beginning to understand why even small changes in lipid structures and in composition can have profound effects on crucial biological functions.
Journal Article
Plasma membrane changes during programmed cell deaths
2018
Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.
Journal Article
The mystery of membrane organization: composition, regulation and roles of lipid rafts
by
Mayor, Satyajit
,
Sezgin, Erdinc
,
Levental, Ilya
in
631/45/287/1192
,
631/45/612/1237
,
631/57/2270
2017
Key Points
Cellular membranes are laterally heterogeneous and consist of transient and dynamic domains with varying properties, which prominently include ordered lipid-driven domains that are referred to as lipid (or membrane) rafts.
Membrane domains can be induced and regulated by a variety of interactions, which include specific lipid–lipid and lipid–protein interactions, bulk membrane properties, and interactions between membrane components and the underlying cytoskeleton.
Advanced microscopy and biochemistry techniques facilitate the study of membrane domains; however, these domains still elude direct
in vivo
visualization. The multiplicity of possible organizational states and their context-dependent nature most likely account for experimental inconsistencies.
Membrane rafts potentially have crucial physiological roles across cell types that range from immune cells to cancer cells.
Membrane domains are conserved throughout the domains of life, which supports their functional importance in biological systems.
Lipid rafts are relatively ordered membrane domains that are enriched in cholesterol and saturated lipids, and selectively recruit other lipids and proteins. They are dynamic and heterogeneous in composition and are thus challenging to visualize
in vivo
. New technologies are providing novel insights into the formation, organization and functions of these membrane domains.
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance
in vivo
, owing primarily to the development of improved biochemical and biophysical technologies.
Journal Article
Wetting and complex remodeling of membranes by biomolecular condensates
2023
Cells compartmentalize parts of their interiors into liquid-like condensates, which can be reconstituted in vitro. Although these condensates interact with membrane-bound organelles, their potential for membrane remodeling and the underlying mechanisms of such interactions are not well-understood. Here, we demonstrate that interactions between protein condensates - including hollow ones, and membranes can lead to remarkable morphological transformations and provide a theoretical framework to describe them. Modulation of solution salinity or membrane composition drives the condensate-membrane system through two wetting transitions, from dewetting, through a broad regime of partial wetting, to complete wetting. When sufficient membrane area is available, fingering or ruffling of the condensate-membrane interface is observed, an intriguing phenomenon producing intricately curved structures. The observed morphologies are governed by the interplay of adhesion, membrane elasticity, and interfacial tension. Our results highlight the relevance of wetting in cell biology, and pave the way for the design of synthetic membrane-droplet based biomaterials and compartments with tunable properties.
In this work, the authors investigated on the interaction of biomolecular condensates with membranes and report that they can exhibit two wetting transitions modulated by membrane or milieu composition. Condensate adhesion can trigger intriguing ruffling of the membrane interface into complex finger-like structures.
Journal Article
Membrane surfaces regulate assembly of ribonucleoprotein condensates
2022
Biomolecular condensates organize biochemistry, yet little is known about how cells control the position and scale of these structures. In cells, condensates often appear as relatively small assemblies that do not coarsen into a single droplet despite their propensity to fuse. Here, we report that ribonucleoprotein condensates of the glutamine-rich protein Whi3 interact with the endoplasmic reticulum, which prompted us to examine how membrane association controls condensate size. Reconstitution revealed that membrane recruitment promotes Whi3 condensation under physiological conditions. These assemblies rapidly arrest, resembling size distributions seen in cells. The temporal ordering of molecular interactions and the slow diffusion of membrane-bound complexes can limit condensate size. Our experiments reveal a trade-off between locally enhanced protein concentration at membranes, which favours condensation, and an accompanying reduction in diffusion, which restricts coarsening. Given that many condensates bind endomembranes, we predict that the biophysical properties of lipid bilayers are key for controlling condensate sizes throughout the cell.
Snead et al. report that membrane tethering facilitates assembly of ribonucleoprotein condensates while also restricting condensate size by reducing the diffusion of protein and RNA.
Journal Article
Multi-responsive hydrogel structures from patterned droplet networks
2020
Responsive hydrogels that undergo controlled shape changes in response to a range of stimuli are of interest for microscale soft robotic and biomedical devices. However, these applications require fabrication methods capable of preparing complex, heterogeneous materials. Here we report a new approach for making patterned, multi-material and multi-responsive hydrogels, on a micrometre to millimetre scale. Nanolitre aqueous pre-gel droplets were connected through lipid bilayers in predetermined architectures and photopolymerized to yield continuous hydrogel structures. By using this droplet network technology to pattern domains containing temperature-responsive or non-responsive hydrogels, structures that undergo reversible curling were produced. Through patterning of gold nanoparticle-containing domains into the hydrogels, light-activated shape change was achieved, while domains bearing magnetic particles allowed movement of the structures in a magnetic field. To highlight our technique, we generated a multi-responsive hydrogel that, at one temperature, could be moved through a constriction under a magnetic field and, at a second temperature, could grip and transport a cargo.Responsive hydrogels are of interest for a range of potential applications, including microscale soft robotic and biomedical devices. Now, a versatile fabrication approach has been developed to prepare patterned, multi-material and multi-responsive hydrogels. Pre-gel droplets are connected through lipid bilayers in predetermined architectures and photopolymerized to yield continuous hydrogel structures that respond to a variety of stimuli.
Journal Article
Metal-coordinated sub-10 nm membranes for water purification
2019
Ultrathin membranes with potentially high permeability are urgently demanded in water purification. However, their facile, controllable fabrication remains a grand challenge. Herein, we demonstrate a metal-coordinated approach towards defect-free and robust membranes with sub-10 nm thickness. Phytic acid, a natural strong electron donor, is assembled with metal ion-based electron acceptors to fabricate metal-organophosphate membranes (MOPMs) in aqueous solution. Metal ions with higher binding energy or ionization potential such as Fe
3+
and Zr
4+
can generate defect-free structure while MOPM-Fe
3+
with superhydrophilicity is preferred. The membrane thickness is minimized to 8 nm by varying the ligand concentration and the pore structure of MOPM-Fe
3+
is regulated by varying the Fe
3+
content. The membrane with optimized MOPM-Fe
3+
composition exhibits prominent water permeance (109.8 L m
−2
h
−1
bar
−1
) with dye rejections above 95% and superior stability. This strong-coordination assembly may enlighten the development of ultrathin high-performance membranes.
Ultrathin membranes have demonstrated great promise for water purification technologies owing to their high permeance. Here the authors fabricate sub-10 nm, defect-free, robust membranes for dye remediation from water through the coordination-driven assembly of metal-organophosphates.
Journal Article
Structural determinants and functional consequences of protein affinity for membrane rafts
by
Lorent, Joseph H.
,
Lin, Xubo
,
Gorfe, Alemayehu A.
in
631/45/612/1237
,
631/57/2270
,
631/57/2271
2017
Eukaryotic plasma membranes are compartmentalized into functional lateral domains, including lipid-driven membrane rafts. Rafts are involved in most plasma membrane functions by selective recruitment and retention of specific proteins. However, the structural determinants of transmembrane protein partitioning to raft domains are not fully understood. Hypothesizing that protein transmembrane domains (TMDs) determine raft association, here we directly quantify raft affinity for dozens of TMDs. We identify three physical features that independently affect raft partitioning, namely TMD surface area, length, and palmitoylation. We rationalize these findings into a mechanistic, physical model that predicts raft affinity from the protein sequence. Application of these concepts to the human proteome reveals that plasma membrane proteins have higher raft affinity than those of intracellular membranes, consistent with raft-mediated plasma membrane sorting. Overall, our experimental observations and physical model establish general rules for raft partitioning of TMDs and support the central role of rafts in membrane traffic.
Lipid rafts are plasma membrane domains that specifically recruit particular proteins. Here, the authors show that the surface area, length and palmitoylation of single-pass transmembrane domains are crucial for raft partitioning and propose a general model to predict protein association with rafts.
Journal Article
Structural basis of NINJ1-mediated plasma membrane rupture in cell death
2023
Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event
1
–
7
. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-1
8
(NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.
Structural, biochemical and mutagenesis studies indicate that, in dying cells, the membrane protein NINJ1 assembles into filaments, disrupting the cell membrane.
Journal Article
Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers
by
Dregni, Aurelio J
,
Shcherbakov, Alexander A
,
Hong, Mei
in
Amiloride
,
Antiviral agents
,
Antiviral drugs
2020
An essential protein of the SARS-CoV-2 virus, the envelope protein E, forms a homopentameric cation channel that is important for virus pathogenicity. Here we report a 2.1-Å structure and the drug-binding site of E’s transmembrane domain (ETM), determined using solid-state NMR spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow pore. The protein deviates from the ideal α-helical geometry due to three phenylalanine residues, which stack within each helix and between helices. Together with valine and leucine interdigitation, these cause a dehydrated pore compared with the viroporins of influenza viruses and HIV. Hexamethylene amiloride binds the polar amino-terminal lumen, whereas acidic pH affects the carboxy-terminal conformation. Thus, the N- and C-terminal halves of this bipartite channel may interact with other viral and host proteins semi-independently. The structure sets the stage for designing E inhibitors as antiviral drugs.A solid-state NMR structure of the transmembrane domain from SARS-CoV-2 envelope protein in the phospholipid environment reveals determinants of cation selectivity, a dehydrated pore and an N-terminal drug-binding site.
Journal Article