Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "631/61/212/2301"
Sort by:
Curated variation benchmarks for challenging medically relevant autosomal genes
The repetitive nature and complexity of some medically relevant genes poses a challenge for their accurate analysis in a clinical setting. The Genome in a Bottle Consortium has provided variant benchmark sets, but these exclude nearly 400 medically relevant genes due to their repetitiveness or polymorphic complexity. Here, we characterize 273 of these 395 challenging autosomal genes using a haplotype-resolved whole-genome assembly. This curated benchmark reports over 17,000 single-nucleotide variations, 3,600 insertions and deletions and 200 structural variations each for human genome reference GRCh37 and GRCh38 across HG002. We show that false duplications in either GRCh37 or GRCh38 result in reference-specific, missed variants for short- and long-read technologies in medically relevant genes, including CBS , CRYAA and KCNE1 . When masking these false duplications, variant recall can improve from 8% to 100%. Forming benchmarks from a haplotype-resolved whole-genome assembly may become a prototype for future benchmarks covering the whole genome. Variant detection in problematic genes is facilitated with a curated benchmark.
An open resource for accurately benchmarking small variant and reference calls
Benchmark small variant calls are required for developing, optimizing and assessing the performance of sequencing and bioinformatics methods. Here, as part of the Genome in a Bottle (GIAB) Consortium, we apply a reproducible, cloud-based pipeline to integrate multiple short- and linked-read sequencing datasets and provide benchmark calls for human genomes. We generate benchmark calls for one previously analyzed GIAB sample, as well as six genomes from the Personal Genome Project. These new genomes have broad, open consent, making this a ‘first of its kind’ resource that is available to the community for multiple downstream applications. We produce 17% more benchmark single nucleotide variations, 176% more indels and 12% larger benchmark regions than previously published GIAB benchmarks. We demonstrate that this benchmark reliably identifies errors in existing callsets and highlight challenges in interpreting performance metrics when using benchmarks that are not perfect or comprehensive. Finally, we identify strengths and weaknesses of callsets by stratifying performance according to variant type and genome context.Genome in a Bottle Consortium presents a high-confidence dataset for benchmarking small variant calls in human genomes.
Best practices for benchmarking germline small-variant calls in human genomes
Standardized benchmarking approaches are required to assess the accuracy of variants called from sequence data. Although variant-calling tools and the metrics used to assess their performance continue to improve, important challenges remain. Here, as part of the Global Alliance for Genomics and Health (GA4GH), we present a benchmarking framework for variant calling. We provide guidance on how to match variant calls with different representations, define standard performance metrics, and stratify performance by variant type and genome context. We describe limitations of high-confidence calls and regions that can be used as truth sets (for example, single-nucleotide variant concordance of two methods is 99.7% inside versus 76.5% outside high-confidence regions). Our web-based app enables comparison of variant calls against truth sets to obtain a standardized performance report. Our approach has been piloted in the PrecisionFDA variant-calling challenges to identify the best-in-class variant-calling methods within high-confidence regions. Finally, we recommend a set of best practices for using our tools and evaluating the results.A new standard allows the accuracy of variant calls to be assessed and compared across different technologies, variant types and genomic regions.
Genomic correlates of response to immune checkpoint blockade
Despite impressive durable responses, immune checkpoint inhibitors do not provide a long-term benefit to the majority of patients with cancer. Understanding genomic correlates of response and resistance to checkpoint blockade may enhance benefits for patients with cancer by elucidating biomarkers for patient stratification and resistance mechanisms for therapeutic targeting. Here we review emerging genomic markers of checkpoint blockade response, including those related to neoantigens, antigen presentation, DNA repair, and oncogenic pathways. Compelling evidence also points to a role for T cell functionality, checkpoint regulators, chromatin modifiers, and copy-number alterations in mediating selective response to immune checkpoint blockade. Ultimately, efforts to contextualize genomic correlates of response into the larger understanding of tumor immune biology will build a foundation for the development of novel biomarkers and therapies to overcome resistance to checkpoint blockade.Responders and non-responders to cancer immunotherapy can be identified through a range of genomic markers.
Haplotyping germline and cancer genomes with high-throughput linked-read sequencing
A microfluidics approach that links short sequence reads enables haplotype construction and complex variation identification from tiny amounts of input DNA. Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4 - ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.
Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue
Single-nuclei RNA sequencing characterizes cell types at the gene level. However, compared to single-cell approaches, many single-nuclei cDNAs are purely intronic, lack barcodes and hinder the study of isoforms. Here we present single-nuclei isoform RNA sequencing (SnISOr-Seq). Using microfluidics, PCR-based artifact removal, target enrichment and long-read sequencing, SnISOr-Seq increased barcoded, exon-spanning long reads 7.5-fold compared to naive long-read single-nuclei sequencing. We applied SnISOr-Seq to adult human frontal cortex and found that exons associated with autism exhibit coordinated and highly cell-type-specific inclusion. We found two distinct combination patterns: those distinguishing neural cell types, enriched in TSS-exon, exon-polyadenylation-site and non-adjacent exon pairs, and those with multiple configurations within one cell type, enriched in adjacent exon pairs. Finally, we observed that human-specific exons are almost as tightly coordinated as conserved exons, implying that coordination can be rapidly established during evolution. SnISOr-Seq enables cell-type-specific long-read isoform analysis in human brain and in any frozen or hard-to-dissociate sample. Complete RNA isoforms are captured by a new single-nuclei sequencing method.
Deep transfer learning for reducing health care disparities arising from biomedical data inequality
As artificial intelligence (AI) is increasingly applied to biomedical research and clinical decisions, developing unbiased AI models that work equally well for all ethnic groups is of crucial importance to health disparity prevention and reduction. However, the biomedical data inequality between different ethnic groups is set to generate new health care disparities through data-driven, algorithm-based biomedical research and clinical decisions. Using an extensive set of machine learning experiments on cancer omics data, we find that current prevalent schemes of multiethnic machine learning are prone to generating significant model performance disparities between ethnic groups. We show that these performance disparities are caused by data inequality and data distribution discrepancies between ethnic groups. We also find that transfer learning can improve machine learning model performance for data-disadvantaged ethnic groups, and thus provides an effective approach to reduce health care disparities arising from data inequality among ethnic groups. Developing machine learning models that work equally well for all ethnic groups is of crucial importance to health disparity prevention and reduction. Here, using an extensive set of machine learning experiments on cancer omics data, the authors find that transfer learning can improve model performance for data-disadvantaged ethnic groups.
The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line
Since 1987, immortalized cells from the ovary of a Chinese hamster have been the workhorse for producing recombinant therapeutics, including monoclonal antibodies, blood factors, hormones, growth factors and enzymes. Xu et al . provide the genome sequence of the ancestral CHO-K1 cell line, which should aid in the optimization of current production cell lines. Chinese hamster ovary (CHO)–derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns. Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.
Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma
Circulating cell-free DNA (cfDNA) is emerging as a powerful monitoring tool in cancer, pregnancy and organ transplantation. Nucleosomal DNA, the predominant form of plasma cfDNA, can be adapted for sequencing via ligation of double-stranded DNA (dsDNA) adapters. dsDNA library preparations, however, are insensitive to ultrashort, degraded cfDNA. Drawing inspiration from advances in paleogenomics, we have applied a single-stranded DNA (ssDNA) library preparation method to sequencing of cfDNA in the plasma of lung transplant recipients (40 samples, six patients). We found that ssDNA library preparation yields a greater portion of sub-100 bp nuclear genomic cfDNA ( p 10 −5 , Mann-Whitney U Test), and an increased relative abundance of mitochondrial (10.7x, p 10 −5 ) and microbial cfDNA (71.3x, p 10 −5 ). The higher yield of microbial sequences from this method increases the sensitivity of cfDNA-based monitoring for infections following transplantation. We detail the fragmentation pattern of mitochondrial, nuclear genomic and microbial cfDNA over a broad fragment length range. We report the observation of donor-specific mitochondrial cfDNA in the circulation of lung transplant recipients. A ssDNA library preparation method provides a more informative window into understudied forms of cfDNA, including mitochondrial and microbial derived cfDNA and short nuclear genomic cfDNA, while retaining information provided by standard dsDNA library preparation methods.
Detection of hidden antibiotic resistance through real-time genomics
Real-time genomics through nanopore sequencing holds the promise of fast antibiotic resistance prediction directly in the clinical setting. However, concerns about the accuracy of genomics-based resistance predictions persist, particularly when compared to traditional, clinically established diagnostic methods. Here, we leverage the case of a multi-drug resistant Klebsiella pneumoniae infection to demonstrate how real-time genomics can enhance the accuracy of antibiotic resistance profiling in complex infection scenarios. Our results show that unlike established diagnostics, nanopore sequencing data analysis can accurately detect low-abundance plasmid-mediated resistance, which often remains undetected by conventional methods. This capability has direct implications for clinical practice, where such “hidden” resistance profiles can critically influence treatment decisions. Consequently, the rapid, in situ application of real-time genomics holds significant promise for improving clinical decision-making and patient outcomes. This study on a multi-drug resistant infection case shows that real-time genomics can detect low-abundance plasmid-encoded resistance missed by established diagnostics.