Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
134 result(s) for "631/61/54/994"
Sort by:
A guide to the organ-on-a-chip
Organs-on-chips (OoCs) are systems containing engineered or natural miniature tissues grown inside microfluidic chips. To better mimic human physiology, the chips are designed to control cell microenvironments and maintain tissue-specific functions. Combining advances in tissue engineering and microfabrication, OoCs have gained interest as a next-generation experimental platform to investigate human pathophysiology and the effect of therapeutics in the body. There are as many examples of OoCs as there are applications, making it difficult for new researchers to understand what makes one OoC more suited to an application than another. This Primer is intended to give an introduction to the aspects of OoC that need to be considered when developing an application-specific OoC. The Primer covers guiding principles and considerations to design, fabricate and operate an OoC, as well as subsequent assaying techniques to extract biological information from OoC devices. Alongside this is a discussion of current and future applications of OoC technology, to inform design and operational decisions during the implementation of OoC systems. Organs-on-chips are microfluidic systems containing miniature tissues with the aim of mimicking human physiology for a range of biomedical and therapeutic applications. Leung, de Haan et al. report practical tips to inform design and operational decisions during the implementation of organ-on-a-chip systems.
Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture
Organoids have extensive therapeutic potential and are increasingly opening up new avenues within regenerative medicine. However, their clinical application is greatly limited by the lack of effective GMP-compliant systems for organoid expansion in culture. Here, we envisage that the use of extracellular matrix (ECM) hydrogels derived from decellularized tissues (DT) can provide an environment capable of directing cell growth. These gels possess the biochemical signature of tissue-specific ECM and have the potential for clinical translation. Gels from decellularized porcine small intestine (SI) mucosa/submucosa enable formation and growth of endoderm-derived human organoids, such as gastric, hepatic, pancreatic, and SI. ECM gels can be used as a tool for direct human organoid derivation, for cell growth with a stable transcriptomic signature, and for in vivo organoid delivery. The development of these ECM-derived hydrogels opens up the potential for human organoids to be used clinically. Organoid cultures have been developed from multiple tissues, opening new possibilities for regenerative medicine. Here the authors demonstrate the derivation of GMP-compliant hydrogels from decellularized porcine small intestine which support formation and growth of human gastric, liver, pancreatic and small intestinal organoids.
Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections
Implant-associated infections due to the formation of bacterial biofilms pose a serious threat in medical healthcare, which needs effective therapeutic methods. Here, we propose a multifunctional nanoreactor by spatiotemporal ultrasound-driven tandem catalysis to amplify the efficacy of sonodynamic and chemodynamic therapy. By combining piezoelectric barium titanate with polydopamine and copper, the ultrasound-activated piezo-hot carriers transfer easily to copper by polydopamine. It boosts reactive oxygen species production by piezoelectrics, and facilitates the interconversion between Cu2 + and Cu + to promote hydroxyl radical generation via Cu +  -catalyzed chemodynamic reactions. Finally, the elevated reactive oxygen species cause bacterial membrane structure loosening and DNA damage. Transcriptomics and metabolomics analysis reveal that intracellular copper overload restricts the tricarboxylic acid cycle, promoting bacterial cuproptosis-like death. Therefore, the polyetherketoneketone scaffold engineered with the designed nanoreactor shows excellent antibacterial performance with ultrasound stimulation and promotes angiogenesis and osteogenesis on-demand in vivo. Implantation-associated infections often lead to infections. Here, the authors propose a piezo-based nanoreactor to achieve US-excited tandem catalysis, endowing the polyetherketoneketone bone scaffold with on-demand antibacterial and osteogenic capacities.
A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids
Experimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin–integrin α 3 /α 6 signalling in establishment and survival of pancreatic organoids. Altered tissue stiffness—a hallmark of pancreatic cancer—was recapitulated in culture by adjusting the hydrogel properties to engage mechano-sensing pathways and alter organoid growth. Pancreatic stromal cells were readily incorporated into the hydrogels and replicated phenotypic traits characteristic of the tumour environment in vivo. This model therefore recapitulates a pathologically remodelled tumour microenvironment for studies of normal and pancreatic cancer cells in vitro. A synthetic hydrogel has been developed to mimic the physicochemical properties of pancreatic tissue and is shown to support the culture of pancreatic cancer organoids, revealing the role of laminin–integrin interactions in their growth.
Cultured meat platform developed through the structuring of edible microcarrier-derived microtissues with oleogel-based fat substitute
With the increasing global demand for meat, cultured meat technologies are emerging, offering more sustainable solutions that aim to evade a future shortage of meat. Here, we demonstrate a cultured meat platform composed of edible microcarriers and an oleogel-based fat substitute. Scalable expansion of bovine mesenchymal stem cells on edible chitosan-collagen microcarriers is optimized to generate cellularized microtissues. In parallel, an oleogel system incorporated with plant protein is developed as a fat substitute, which is comparable to beef fat in appearance and texture. Combining the cellularized microtissues with the developed fat substitute, two types of cultured meat prototypes are introduced: layered cultured meat and burger-like cultured meat. While the layered prototype benefits enhanced stiffness, the burger-like prototype has a marbling meat-like appearance and a softer texture. Overall, this platform and the established technological basis may contribute to the development of different cultured meat products and promote their commercial production. Cultured meat (CM) is a sustainable alternative for meat, providing similar eating experience and nutrition. Here the authors present and fully characterize a CM platform from cellularized edible microcarriers and oleogel-based fat substitute.
Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect
Induced pluripotent stem cells (iPSCs) are a promising resource for allogeneic cartilage transplantation to treat articular cartilage defects that do not heal spontaneously and often progress to debilitating conditions, such as osteoarthritis. However, to the best of our knowledge, allogeneic cartilage transplantation into primate models has never been assessed. Here, we show that allogeneic iPSC-derived cartilage organoids survive and integrate as well as are remodeled as articular cartilage in a primate model of chondral defects in the knee joints. Histological analysis revealed that allogeneic iPSC-derived cartilage organoids in chondral defects elicited no immune reaction and directly contributed to tissue repair for at least four months. iPSC-derived cartilage organoids integrated with the host native articular cartilage and prevented degeneration of the surrounding cartilage. Single-cell RNA-sequence analysis indicated that iPSC-derived cartilage organoids differentiated after transplantation, acquiring expression of PRG4 crucial for joint lubrication. Pathway analysis suggested the involvement of SIK3 inactivation. Our study outcomes suggest that allogeneic transplantation of iPSC-derived cartilage organoids may be clinically applicable for the treatment of patients with chondral defects of the articular cartilage; however further assessment of functional recovery long term after load bearing injuries is required. Allogeneic iPSC-derived cartilage organoids survive and integrate with surrounding native cartilage without immune reactions in a primate model of chondral defects in the knee joints, being remodeled and functioning as articular cartilage.
3D bioprinted silk fibroin hydrogels for tissue engineering
The development of biocompatible and precisely printable bioink addresses the growing demand for three-dimensional (3D) bioprinting applications in the field of tissue engineering. We developed a methacrylated photocurable silk fibroin (SF) bioink for digital light processing 3D bioprinting to generate structures with high mechanical stability and biocompatibility for tissue engineering applications. Procedure 1 describes the synthesis of photocurable methacrylated SF bioink, which takes 2 weeks to complete. Digital light processing is used to fabricate 3D hydrogels using the bioink (1.5 h), which are characterized in terms of methacrylation, printability, mechanical and rheological properties, and biocompatibility. The physicochemical properties of the bioink can be modulated by varying photopolymerization conditions such as the degree of methacrylation, light intensity, and concentration of the photoinitiator and bioink. The versatile bioink can be used broadly in a range of applications, including nerve tissue engineering through co-polymerization of the bioink with graphene oxide, and for wound healing as a sealant. Procedure 2 outlines how to apply 3D-printed SF hydrogels embedded with chondrocytes and turbinate-derived mesenchymal stem cells in one specific in vivo application, trachea tissue engineering, which takes 2–9 weeks. Park and colleagues describe the synthesis of methacrylated photocurable silk fibroin bioink for digital light processing 3D bioprinting as well as fabrication of biocompatible organ-mimicking hydrogel structures for trachea tissue engineering.
3D Inkjet Printing of Complex, Cell-Laden Hydrogel Structures
Inkjet printing is widely considered a promising strategy to pattern hydrogels and living cells into three-dimensional (3D) constructs that structurally resemble tissues in our body. However, this approach is currently constrained by the limited control over multi-component deposition: the variable droplet ejection characteristics of different bioinks and dispensing units make synchronized printing very challenging. This invariably results in artificial tissues that lack the complexity and function of their native counterparts. By careful optimization of the printing parameters for two different bioink formulations, here we report the inkjet-based 3D-patterning of hydrogels according to relatively complex blueprints. 3D printing of bioinks containing living cells resulted in high-resolution, multi-component living constructs. Finally, we describe a sacrificial material approach to inkjet print perfuseable channels for improved long-term cultures of larger samples. We believe that this work provides a foundation for the generation of more complex 3D tissue models by inkjet printing.
Four-dimensional hydrogel dressing adaptable to the urethral microenvironment for scarless urethral reconstruction
The harsh urethral microenvironment (UME) after trauma severely hinders the current hydrogel-based urethral repair. In fact, four-dimensional (4D) consideration to mimic time-dependent physiological processes is essential for scarless urethral reconstruction, which requires balancing extracellular matrix (ECM) deposition and remodeling at different healing stages. In this study, we develop a UME-adaptable 4D hydrogel dressing to sequentially provide an early-vascularized microenvironment and later-antifibrogenic microenvironment for scarless urethral reconstruction. With the combination of dynamic boronic ester crosslinking and covalent photopolymerization, the resultant gelatin methacryloyl phenylboronic acid/ cis -diol-crosslinked ( GMPD ) hydrogels exhibit mussel-mimetic viscoelasticity, satisfactory adhesion, and acid-reinforced stability, which can adapt to harsh UME. In addition, a temporally on-demand regulatory ( TOR ) technical platform is introduced into GMPD hydrogels to create a time-dependent 4D microenvironment. As a result, physiological urethral recovery is successfully mimicked by means of an early-vascularized microenvironment to promote wound healing by activating the vascular endothelial growth factor (VEGF) signaling pathway, as well as a later-antifibrogenic microenvironment to prevent hypertrophic scar formation by timing transforming growth factor-β (TGFβ) signaling pathway inhibition. Both in vitro molecular mechanisms of the physiological healing process and in vivo scarless urethral reconstruction in a rabbit model are effectively verified, providing a promising alternative for urethral injury treatment. Urethral repair can be carried out using hydrogels, but the harsh microenvironment hinders the repair. Here, the authors report the development of a 4D hydrogel dressing that can provide an early-vascularised and later-antifibrogenic microenvironment to assist in scarless reconstruction.
Targeted mechanical stimulation via magnetic nanoparticles guides in vitro tissue development
Tissues take shape through a series of morphogenetic movements guided by local cell-scale mechanical forces. Current in vitro approaches to recapitulate tissue mechanics rely on uncontrolled self-organization or on the imposition of extrinsic and homogenous forces using matrix or instrument-driven stimulation, thereby failing to recapitulate highly localized and spatially varying forces. Here we develop a method for targeted mechanical stimulation of organoids using embedded magnetic nanoparticles. We show that magnetic clusters within organoids can be produced by sequential aggregation of magnetically labeled and non-labeled human pluripotent stem cells. These clusters impose local mechanical forces on the surrounding cells in response to applied magnetic fields. We show that precise, spatially defined actuation provides short-term mechanical tissue perturbations as well as long-term cytoskeleton remodeling in these organoids, which we term “magnetoids”. We demonstrate that targeted magnetic nanoparticle-driven actuation guides asymmetric tissue growth and proliferation, leading to enhanced patterning in human neural magnetoids. This approach, enabled by nanoparticle technology, allows for precise and locally controllable mechanical actuation in human neural tube organoids, and could be widely applicable to interrogate the role of local mechanotransduction in developmental and disease model systems. Highly localized mechanical forces that shape in vivo tissue development remain challenging to recapitulate in vitro. Here the authors use magnetically actuated nanoparticles to generate spatially defined forces within organoids, which guide the spatial organization of tissue patterning and growth.