Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,710
result(s) for
"631/67/1059/2326"
Sort by:
Targeting CDK4 and CDK6 in cancer
by
Zhao, Jean J
,
Bergholz, Johann S
,
Goel, Shom
in
Breast cancer
,
Cell cycle
,
Cyclin-dependent kinase 4
2022
Cyclin-dependent kinase 4 (CDK4) and CDK6 are critical mediators of cellular transition into S phase and are important for the initiation, growth and survival of many cancer types. Pharmacological inhibitors of CDK4/6 have rapidly become a new standard of care for patients with advanced hormone receptor-positive breast cancer. As expected, CDK4/6 inhibitors arrest sensitive tumour cells in the G1 phase of the cell cycle. However, the effects of CDK4/6 inhibition are far more wide-reaching. New insights into their mechanisms of action have triggered identification of new therapeutic opportunities, including the development of novel combination regimens, expanded application to a broader range of cancers and use as supportive care to ameliorate the toxic effects of other therapies. Exploring these new opportunities in the clinic is an urgent priority, which in many cases has not been adequately addressed. Here, we provide a framework for conceptualizing the activity of CDK4/6 inhibitors in cancer and explain how this framework might shape the future clinical development of these agents. We also discuss the biological underpinnings of CDK4/6 inhibitor resistance, an increasingly common challenge in clinical oncology.Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6, regulators of the cell cycle, favours the growth and survival of several cancer types. Owing to this, CDK4 and CDK6 inhibitors were developed and are currently approved for the treatment of advanced hormone receptor-positive breast cancer. This Review describes how we are only now beginning to fully understand their mechanisms of action and provides a new framework for conceptualizing their activity, which might enable expansion of the clinical opportunities of these agents.
Journal Article
EMT in cancer
2018
Similar to embryonic development, changes in cell phenotypes defined as an epithelial to mesenchymal transition (EMT) have been shown to play a role in the tumorigenic process. Although the first description of EMT in cancer was in cell cultures, evidence for its role in vivo is now widely reported but also actively debated. Moreover, current research has exemplified just how complex this phenomenon is in cancer, leaving many exciting, open questions for researchers to answer in the future. With these points in mind, we asked four scientists for their opinions on the role of EMT in cancer and the challenges faced by scientists working in this fast-moving field.
Journal Article
Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer
by
Zervantonakis, Ioannis K
,
Brugge, Joan S
,
Labrie, Marilyne
in
Cancer
,
Cell death
,
Cell viability
2022
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.This Review discusses mechanisms by which tumour ecosystems adapt to therapeutic stresses and how these could be exploited, as well as challenges associated with tumour heterogeneity. It provides an integrative framework to identify and target vulnerabilities that arise from adaptive responses to overcome cancer therapy resistance.
Journal Article
Recent advances and discoveries in the mechanisms and functions of CAR T cells
2021
This Review discusses the major advances and changes made over the past 3 years to our understanding of chimeric antigen receptor (CAR) T cell efficacy and safety. Recently, the field has gained insight into how various molecular modules of the CAR influence signalling and function. We report on mechanisms of toxicity and resistance as well as novel engineering and pharmaceutical interventions to overcome these challenges. Looking forward, we discuss new targets and indications for CAR T cell therapy expected to reach the clinic in the next 1–2 years. We also consider some new studies that have implications for the future of CAR T cell therapies, including changes to manufacturing, allogeneic products and drug-regulatable CAR T cells.This Review outlines the major advances that have been made to the efficacy and safety of chimeric antigen receptor (CAR) T cell therapies over the past 3 years and looks to new findings that will have consequences for the future of this immunotherapy.
Journal Article
Towards targeting of shared mechanisms of cancer metastasis and therapy resistance
by
Weiss, Felix
,
Friedl, Peter
,
Lauffenburger, Douglas
in
Apoptosis
,
Autocrine signalling
,
Cancer
2022
Resistance to therapeutic treatment and metastatic progression jointly determine a fatal outcome of cancer. Cancer metastasis and therapeutic resistance are traditionally studied as separate fields using non-overlapping strategies. However, emerging evidence, including from in vivo imaging and in vitro organotypic culture, now suggests that both programmes cooperate and reinforce each other in the invasion niche and persist upon metastatic evasion. As a consequence, cancer cell subpopulations exhibiting metastatic invasion undergo multistep reprogramming that — beyond migration signalling — supports repair programmes, anti-apoptosis processes, metabolic adaptation, stemness and survival. Shared metastasis and therapy resistance signalling are mediated by multiple mechanisms, such as engagement of integrins and other context receptors, cell–cell communication, stress responses and metabolic reprogramming, which cooperate with effects elicited by autocrine and paracrine chemokine and growth factor cues present in the activated tumour microenvironment. These signals empower metastatic cells to cope with therapeutic assault and survive. Identifying nodes shared in metastasis and therapy resistance signalling networks should offer new opportunities to improve anticancer therapy beyond current strategies, to eliminate both nodular lesions and cells in metastatic transit.This Perspective outlines how the signalling pathways enabling metastasis are often shared with those supporting resistance to cancer therapies. Identifying nodes within these shared signalling networks that could be targeted might result in more effective therapies for the treatment of rapidly growing solid tumours.
Journal Article
Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion
by
Conrad, Marcus
,
Krysko, Dmitri V
,
Friedmann Angeli José Pedro
in
Apoptosis
,
Cancer
,
Cell death
2019
Ferroptosis is a recently recognized cell death modality that is morphologically, biochemically and genetically distinct from other forms of cell death and that has emerged to play an important role in cancer biology. Recent discoveries have highlighted the metabolic plasticity of cancer cells and have provided intriguing insights into how metabolic rewiring is a critical event for the persistence, dedifferentiation and expansion of cancer cells. In some cases, this metabolic reprogramming has been linked to an acquired sensitivity to ferroptosis, thus opening up new opportunities to treat therapy-insensitive tumours. However, it is not yet clear what metabolic determinants are critical for therapeutic resistance and evasion of immune surveillance. Therefore, a better understanding of the processes that regulate ferroptosis sensitivity should ultimately aid in the discovery of novel therapeutic strategies to improve cancer treatment. In this Perspectives article, we provide an overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression.This Opinion article provides an overview of the mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour progression.
Journal Article
A framework for advancing our understanding of cancer-associated fibroblasts
2020
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.This Consensus Statement highlights the importance of cancer-associated fibroblasts in cancer biology and progression, and issues a call to action for all cancer researchers to standardize assays and report metadata in studies of cancer-associated fibroblasts to advance our understanding of this important cell type in the tumour microenvironment.
Journal Article
Non-genetic mechanisms of therapeutic resistance in cancer
by
Jean-Christophe, Marine
,
Dawson, Mark A
,
Dawson, Sarah-Jane
in
Cancer
,
Evolution & development
,
Immunosurveillance
2020
Therapeutic resistance continues to be an indominable foe in our ambition for curative cancer treatment. Recent insights into the molecular determinants of acquired treatment resistance in the clinical and experimental setting have challenged the widely held view of sequential genetic evolution as the primary cause of resistance and brought into sharp focus a range of non-genetic adaptive mechanisms. Notably, the genetic landscape of the tumour and the non-genetic mechanisms used to escape therapy are frequently linked. Remarkably, whereas some oncogenic mutations allow the cancer cells to rapidly adapt their transcriptional and/or metabolic programme to meet and survive the therapeutic pressure, other oncogenic drivers convey an inherent cellular plasticity to the cancer cell enabling lineage switching and/or the evasion of anticancer immunosurveillance. The prevalence and diverse array of non-genetic resistance mechanisms pose a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes. In this Perspective we discuss the key principles of non-genetic therapy resistance in cancer. We provide a perspective on the emerging data from clinical studies and sophisticated cancer models that have studied various non-genetic resistance pathways and highlight promising therapeutic avenues that may be used to negate and/or counteract the non-genetic adaptive pathways.This Perspective discusses how therapeutic resistance is not only driven by genetic evolution but often involves non-genetic adaptive mechanisms that are intimately linked. Acknowledging these adaptive processes will enable the development of innovative strategies to monitor and counteract non-genetic therapy resistance as well as provide novel therapeutic avenues.
Journal Article
mTOR signalling and cellular metabolism are mutual determinants in cancer
2018
Oncogenic signalling and metabolic alterations are interrelated in cancer cells. mTOR, which is frequently activated in cancer, controls cell growth and metabolism. mTOR signalling regulates amino acid, glucose, nucleotide, fatty acid and lipid metabolism. Conversely, metabolic inputs, such as amino acids, activate mTOR. In this Review, we discuss how mTOR signalling rewires cancer cell metabolism and delineate how changes in metabolism, in turn, sustain mTOR signalling and tumorigenicity. Several drugs are being developed to perturb cancer cell metabolism. However, their efficacy as stand-alone therapies, similar to mTOR inhibitors, is limited. Here, we discuss how the interdependence of mTOR signalling and metabolism can be exploited for cancer therapy.
Journal Article
A view on drug resistance in cancer
2019
The problem of resistance to therapy in cancer is multifaceted. Here we take a reductionist approach to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures. We propose four general solutions to drug resistance that are based on earlier detection of tumours permitting cancer interception; adaptive monitoring during therapy; the addition of novel drugs and improved pharmacological principles that result in deeper responses; and the identification of cancer cell dependencies by high-throughput synthetic lethality screens, integration of clinico-genomic data and computational modelling. These different approaches could eventually be synthesized for each tumour at any decision point and used to inform the choice of therapy.
A review of drug resistance in cancer analyses each biological determinant of resistance separately and discusses existing and new therapeutic strategies to combat the problem as a whole.
Journal Article