Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,360 result(s) for "631/67/1059/99"
Sort by:
Nasopharyngeal carcinoma: an evolving paradigm
The past three decades have borne witness to many advances in the understanding of the molecular biology and treatment of nasopharyngeal carcinoma (NPC), an Epstein–Barr virus (EBV)-associated cancer endemic to southern China, southeast Asia and north Africa. In this Review, we provide a comprehensive, interdisciplinary overview of key research findings regarding NPC pathogenesis, treatment, screening and biomarker development. We describe how technological advances have led to the advent of proton therapy and other contemporary radiotherapy approaches, and emphasize the relentless efforts to identify the optimal sequencing of chemotherapy with radiotherapy through decades of clinical trials. Basic research into the pathogenic role of EBV and the genomic, epigenomic and immune landscape of NPC has laid the foundations of translational research. The latter, in turn, has led to the development of new biomarkers and therapeutic targets and of improved approaches for individualizing immunotherapy and targeted therapies for patients with NPC. We provide historical context to illustrate the effect of these advances on treatment outcomes at present. We describe current preclinical and clinical challenges and controversies in the hope of providing insights for future investigation.Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus (EBV)-associated malignancy endemic to southern China, southeast Asia and north Africa. The authors of this Review present a comprehensive overview of advances from the past three decades on the pathogenic role of EBV, and the genomic, epigenomic and immune landscape of NPC, which have led to the development of new biomarkers, therapeutic targets and improved treatment approaches for patients with NPC.
The rediscovery of platinum-based cancer therapy
Platinum (Pt) compounds entered the clinic as anticancer agents when cisplatin was approved in 1978. More than 40 years later, even in the era of precision medicine and immunotherapy, Pt drugs remain among the most widely used anticancer drugs. As Pt drugs mainly target DNA, it is not surprising that recent insights into alterations of DNA repair mechanisms provide a useful explanation for their success. Many cancers have defective DNA repair, a feature that also sheds new light on the mechanisms of secondary drug resistance, such as the restoration of DNA repair pathways. In addition, genome-wide functional screening approaches have revealed interesting insights into Pt drug uptake. About half of cisplatin and carboplatin but not oxaliplatin may enter cells through the widely expressed volume-regulated anion channel (VRAC). The analysis of this heteromeric channel in tumour biopsies may therefore be a useful biomarker to stratify patients for initial Pt treatments. Moreover, Pt-based approaches may be improved in the future by the optimization of combinations with immunotherapy, management of side effects and use of nanodelivery devices. Hence, Pt drugs may still be part of the standard of care for several cancers in the coming years.Platinum chemotherapy agents remain among the most widely used anticancer drugs, but there is still room to maximize their efficacy. This Review discusses newer findings related to sensitivity and resistance to these drugs as well as recent advances in platinum drug development.
Multi-omic machine learning predictor of breast cancer therapy response
Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment 1 . The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy 2 . Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2 )-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery 3 were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers. Integration of pre-treatment tumour features in predictive models using machine learning could inform on response to therapy.
UK guidelines for the management of soft tissue sarcomas
Soft tissue sarcomas (STS) are rare tumours arising in mesenchymal tissues and can occur almost anywhere in the body. Their rarity, and the heterogeneity of subtype and location, means that developing evidence-based guidelines is complicated by the limitations of the data available. This makes it more important that STS are managed by expert multidisciplinary teams, to ensure consistent and optimal treatment, recruitment to clinical trials, and the ongoing accumulation of further data and knowledge. The development of appropriate guidance, by an experienced panel referring to the evidence available, is therefore a useful foundation on which to build progress in the field. These guidelines are an update of the previous versions published in 2010 and 2016 [ 1 , 2 ]. The original guidelines were drawn up by a panel of UK sarcoma specialists convened under the auspices of the British Sarcoma Group (BSG) and were intended to provide a framework for the multidisciplinary care of patients with soft tissue sarcomas. This iteration of the guidance, as well as updating the general multidisciplinary management of soft tissue sarcoma, includes specific sections relating to the management of sarcomas at defined anatomical sites: gynaecological sarcomas, retroperitoneal sarcomas, breast sarcomas, and skin sarcomas. These are generally managed collaboratively by site specific multidisciplinary teams linked to the regional sarcoma specialist team, as stipulated in the recently published sarcoma service specification [ 3 ]. In the UK, any patient with a suspected soft tissue sarcoma should be referred to a specialist regional soft tissues sarcoma service, to be managed by a specialist sarcoma multidisciplinary team. Once the diagnosis has been confirmed using appropriate imaging and a tissue biopsy, the main modality of management is usually surgical excision performed by a specialist surgeon, combined with pre- or post-operative radiotherapy for tumours at higher risk for local recurrence. Systemic anti-cancer therapy (SACT) may be utilised in cases where the histological subtype is considered more sensitive to systemic treatment. Regular follow-up is recommended to assess local control, development of metastatic disease, and any late effects of treatment.
DNA damage and the balance between survival and death in cancer biology
Key Points The constant deleterious modification of DNA by reactive molecules, endogenously or exogenously generated, is offset by protective processes that are initiated by the DNA damage response. The interplay of the diverse signalling cascades (DNA damage response) that originate from the interference of DNA lesions with replication and the transcriptome leads to the activation of DNA repair, autophagy, senescence, apoptosis and necroptosis. Aspects of how post-translational modifications of the tumour suppressor p53 determine the switch between these end points are discussed. The crosstalk between autophagy, senescence, apoptosis and regulated necrosis is also discussed, focusing on the importance of thresholds for deciding cell fate. Throughout this Review, emphasis is placed on how DNA damage and DNA repair fit within the complex cellular context. Understanding how DNA damage determines cell fate — DNA repair and cell survival or death — is important for gaining insight into carcinogenesis and in promoting successful cancer therapy. This Review describes key decision-making nodes in the complex interplay between DNA damage responses and cell fate signalling. DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Targeting FAK in anticancer combination therapies
Focal adhesion kinase (FAK) is both a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signalling and cell migration, but FAK can also promote cell survival in response to stress. FAK is commonly overexpressed in cancer and is considered a high-value druggable target, with multiple FAK inhibitors currently in development. Evidence suggests that in the clinical setting, FAK targeting will be most effective in combination with other agents so as to reverse failure of chemotherapies or targeted therapies and enhance efficacy of immune-based treatments of solid tumours. Here, we discuss the recent preclinical evidence that implicates FAK in anticancer therapeutic resistance, leading to the view that FAK inhibitors will have their greatest utility as combination therapies in selected patient populations.Focal adhesion kinase (FAK) is overexpressed in many cancers and is involved in a multitude of oncogenic processes and resistance mechanisms. This Review discusses the rationale and preclinical evidence for FAK-based combination therapies and strategies for future development.
The multifaceted roles of PARP1 in DNA repair and chromatin remodelling
Key Points Poly(ADP-ribose) polymerase 1 (PARP1) was the first member of the PARP family to be identified. The PARP family now comprises 18 members. PARP1 post-translationally modifies itself and a range of other proteins that have diverse roles in different cellular processes. The catalytic activity of PARP1 is responsible for mediating multiple DNA damage repair pathways. PARP1 has a crucial role in the stabilization of DNA replication forks. The role of PARP1 in remodelling chromatin overlaps with its role in DNA repair. PARP1 inhibition is an attractive strategy for the treatment of cancers that are deficient in the repair of DNA double-strand breaks by homologous recombination. Recent insights into the roles of poly(ADP-ribose) polymerase 1 (PARP1) in mediating various DNA repair pathways, stabilizing DNA replication and modulating chromatin structure are being exploited clinically for the treatment of DNA repair-deficient cancers. Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.
Cisplatin is retained in the cochlea indefinitely following chemotherapy
Cisplatin chemotherapy causes permanent hearing loss in 40–80% of treated patients. It is unclear whether the cochlea has unique sensitivity to cisplatin or is exposed to higher levels of the drug. Here we use inductively coupled plasma mass spectrometry (ICP-MS) to examine cisplatin pharmacokinetics in the cochleae of mice and humans. In most organs cisplatin is detected within one hour after injection, and is eliminated over the following days to weeks. In contrast, the cochlea retains cisplatin for months to years after treatment in both mice and humans. Using laser ablation coupled to ICP-MS, we map cisplatin distribution within the human cochlea. Cisplatin accumulation is consistently high in the stria vascularis, the region of the cochlea that maintains the ionic composition of endolymph. Our results demonstrate long-term retention of cisplatin in the human cochlea, and they point to the stria vascularis as an important therapeutic target for preventing cisplatin ototoxicity. Permanent hearing loss occurs in many cancer patients treated with cisplatin. In this study, the authors examine cisplatin pharmacokinetics in the cochleae of mice and humans showing that cisplatin is retained for months to years after treatment.
The changing therapeutic landscape of head and neck cancer
Head and neck cancers are a heterogeneous collection of malignancies of the upper aerodigestive tract, salivary glands and thyroid. In this Review, we primarily focus on the changing therapeutic landscape of head and neck squamous cell carcinomas (HNSCCs) that can arise in the oral cavity, oropharynx, hypopharynx and larynx. We highlight developments in surgical and non-surgical therapies (mainly involving the combination of radiotherapy and chemotherapy), outlining how these treatments are being used in the current era of widespread testing for the presence of human papillomavirus infection in patients with HNSCC. Finally, we describe the clinical trials that led to the approval of the first immunotherapeutic agents for HNSCC, and discuss the development of strategies to decrease the toxicity of different treatment modalities.The authors of this Review discuss treatments currently available for patients with head and neck squamous cell carcinomas (focusing in those of the oral cavity, oropharynx, hypopharynx and larynx). Advances in surgical and non-surgical approaches (mainly combinations of radiotherapy and chemotherapy) are discussed, including the first immunotherapeutic agents approved for these malignancies.
NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance
The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically 1 , 2 . This results in substantial accumulation of lacate, the end product of anaerobic glycolysis, in cancer cells 3 . However, how cancer metabolism affects chemotherapy response and DNA repair in general remains incompletely understood. Here we report that lactate-driven lactylation of NBS1 promotes homologous recombination (HR)-mediated DNA repair. Lactylation of NBS1 at lysine 388 (K388) is essential for MRE11–RAD50–NBS1 (MRN) complex formation and the accumulation of HR repair proteins at the sites of DNA double-strand breaks. Furthermore, we identify TIP60 as the NBS1 lysine lactyltransferase and the ‘writer’ of NBS1 K388 lactylation, and HDAC3 as the NBS1 de-lactylase. High levels of NBS1 K388 lactylation predict poor patient outcome of neoadjuvant chemotherapy, and lactate reduction using either genetic depletion of lactate dehydrogenase A (LDHA) or stiripentol, a lactate dehydrogenase A inhibitor used clinically for anti-epileptic treatment, inhibited NBS1 K388 lactylation, decreased DNA repair efficacy and overcame resistance to chemotherapy. In summary, our work identifies NBS1 lactylation as a critical mechanism for genome stability that contributes to chemotherapy resistance and identifies inhibition of lactate production as a promising therapeutic cancer strategy. Lactylation of NBS1 by TIP60 promotes homologous recombination-driven DNA repair and resistance to chemotherapy in cancer cells and links altered cancer cell metabolism to increase genome stability.