Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "631/80/84/2338"
Sort by:
Mechanisms of 3D cell migration
Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non-muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration.
Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability
Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-β signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. ‘Transitioning’ cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events. Endothelial to mesenchymal transition (EndMT) is a crucial developmental process that also plays a role in the pathogenesis of some diseases. Here the authors show that EndMT contributes to the development of atherosclerosis in mice and humans, and is associated with complex human plaques that may be prone to rupture.
Focal adhesions contain three specialized actin nanoscale layers
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics. Focal adhesions are dynamic structures that link the cell to the extracellular matrix. Here, the authors report that focal adhesions contain tropomyosin-decorated actin filaments, and show evidence that suggests specific functions in adhesion dynamics and cell migration.
FMNL formins boost lamellipodial force generation
Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro . In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching. Actin polymerization in lamellipodia of cells is regulated by the Arp2/3 complex and FMNL family formins. Here the authors show that both FMNL2 and FMNL3 contribute to lamellipodium protrusion and structure, and abolishing FMNL2/3 reduces protrusion force generation and migration, without affecting Arp2/3 incorporation.
Shielding of actin by the endoplasmic reticulum impacts nuclear positioning
Nuclear position is central to cell polarization, and its disruption is associated with various pathologies. The nucleus is moved away from the leading edge of migrating cells through its connection to moving dorsal actin cables, and the absence of connections to immobile ventral stress fibers. It is unclear how these asymmetric nucleo-cytoskeleton connections are established. Here, using an in vitro wound assay, we find that remodeling of endoplasmic reticulum (ER) impacts nuclear positioning through the formation of a barrier that shields immobile ventral stress fibers. The remodeling of ER and perinuclear ER accumulation is mediated by the ER shaping protein Climp-63. Furthermore, ectopic recruitment of the ER to stress fibers restores nuclear positioning in the absence of Climp-63. Our findings suggest that the ER mediates asymmetric nucleo-cytoskeleton connections to position the nucleus. The nucleus connects to the actin cytoskeleton for nuclear movement in migrating cells. Here, the authors show that the endoplasmic reticulum shields actin cables to generate asymmetric nucleo-cytoskeleton connections for nuclear positioning.
PPP2R1A regulates migration persistence through the NHSL1-containing WAVE Shell Complex
The RAC1-WAVE-Arp2/3 signaling pathway generates branched actin networks that power lamellipodium protrusion of migrating cells. Feedback is thought to control protrusion lifetime and migration persistence, but its molecular circuitry remains elusive. Here, we identify PPP2R1A by proteomics as a protein differentially associated with the WAVE complex subunit ABI1 when RAC1 is activated and downstream generation of branched actin is blocked. PPP2R1A is found to associate at the lamellipodial edge with an alternative form of WAVE complex, the WAVE Shell Complex, that contains NHSL1 instead of the Arp2/3 activating subunit WAVE, as in the canonical WAVE Regulatory Complex. PPP2R1A is required for persistence in random and directed migration assays and for RAC1-dependent actin polymerization in cell extracts. PPP2R1A requirement is abolished by NHSL1 depletion. PPP2R1A mutations found in tumors impair WAVE Shell Complex binding and migration regulation, suggesting that the coupling of PPP2R1A to the WAVE Shell Complex is essential to its function. The WAVE regulatory complex activates Arp2/3 at the cell cortex and in membrane protrusions to generate persistent cell migration. Here authors show that PPP2R1A, a scaffold subunit of protein phosphatase 2, associates with an alternative form of the WAVE complex where WAVE, the subunit that activates Arp2/3, is replaced by NHSL1.
Contractile fibroblasts form a transient niche for the branching mammary epithelium
Fibroblasts are stromal cells found in connective tissue that are critical for organ development, tissue homeostasis and pathology. Single-cell transcriptomic analyses have revealed a high level of inter- and intra-organ heterogeneity of fibroblasts. However, the functional implications and lineage relations of different fibroblast subtypes remained unexplored, especially in the mammary gland. Here, we provide a comprehensive characterization of pubertal mouse mammary fibroblasts, through single-cell RNA sequencing, spatial mapping, functional assays, and in vivo lineage tracing. We unravel a transient niche-forming population of specialized contractile fibroblasts that exclusively localize around the tips of the growing mammary epithelium and are recruited from preadipocytes in the surrounding fat pad stroma. Using organoid-fibroblast co-cultures we reveal that different fibroblast populations can acquire contractile features when in direct contact with the epithelium, promoting organoid branching. The detailed in vivo characterization of these specialized cells and their lineage history provides insights into fibroblast heterogeneity and implicates their importance for creating a signalling niche during mouse mammary gland development. Fibroblasts represent a heterogenous cell population but how their differences reflect their plasticity and origin is not fully understood. Here, the authors map the origin and fate of a transient contractile fibroblast population that forms a niche supporting pubertal mammary gland branching and growth.
Nance-Horan Syndrome-like 1 protein negatively regulates Scar/WAVE-Arp2/3 activity and inhibits lamellipodia stability and cell migration
Cell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. Here we identify Nance-Horan Syndrome-like 1 protein (NHSL1) as a direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin density of lamellipodia, and consequently impairing the stability of lamellipodia protrusions. Cell migration is essential for many physiological processes. Its deregulation causes cancer metastasis and it is not well understood how it is tightly controlled. We identify NHSL1 as a negative regulator of actin nucleating Scar/WAVE-Arp2/3 complexes, cell protrusion stability, and cell migration.
NHSL3 controls single and collective cell migration through two distinct mechanisms
The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3 , the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms. We identify the partner repertoire of each isoform using proteomics and predict direct partners and their binding sites using an AlphaFold2-based pipeline. Rescue with specific isoforms, and lack of rescue when relevant binding sites are mutated, establish that the interaction of a long isoform with MENA/VASP proteins is critical at cell-cell junctions for collective migration, while the interaction of a short one with 14-3-3θ in lamellipodia is critical for single cell migration. Taken together, these results demonstrate that NHSL3 regulates single and collective cell migration through distinct mechanisms. NHSL3 is the most recently identified gene of the Nance-Horan syndrome family. Here, the authors show that the gene encodes several protein isoforms that control both single and collective cell migration by interacting with specific effector proteins.
Novel in vivo endometriotic models associated eutopic endometrium by implanting menstrual blood-derived stromal cells from patients with endometriosis
The eutopic endometrium provides novel insights into endometriotic pathophysiology and treatment. However, no in vivo models currently available are suitable for eutopic endometrium in endometriosis. In this study, we present new endometriotic in vivo models associated with eutopic endometrium using menstrual blood-derived stromal cells (MenSCs). First, we isolated endometriotic MenSCs (E-MenSCs) and healthy MenSCs (H-MenSCs) from the menstrual blood of patients with endometriosis ( n  = 6) and healthy volunteers ( n  = 6). Then, we identified MenSCs’ endometrial stromal cell properties using adipogenic and osteogenic differentiation. A cell counting kit-8 and wound healing assay were used to compare the proliferation and migration capability between E-MenSCs and H-MenSCs. Seventy female nude mice were used to prepare endometriotic models related to eutopic endometrium by implanting E-MenSCs relying on three approaches, including surgical implantation using scaffolds seeded with MenSCs, and subcutaneous injection of MenSCs in the abdomen and the back ( n  = 10). H-MenSCs or scaffolds only were implanted in control groups ( n  = 10). One month after the surgical implantation and 1 week after the subcutaneous injection, we evaluated modeling by hematoxylin–eosin (H&E) and immunofluorescent staining of human leukocyte antigen α (HLAA). Fibroblast morphology, lipid droplets, and calcium nodules in E-MenSCs and H-MenSCs identified their endometrial stromal cell properties. We noticed that the proliferation and migration of E-MenSCs were considerably enhanced compared to H-MenSCs ( P  < 0.05). E-MenSCs implanted in nude mice formed ectopic lesions using three approaches ( n  = 10; lesions formation rate: 90%, 115%, and 80%; average volumes: 123.60, 27.37, and 29.56 mm 3 ), while H-MenSCs in the nude mice shaped nothing at the implantation sites. Endometrial glands, stroma, and HLAA expression in these lesions further verified the success and applicability of the proposed endometriotic modeling. Findings provide in vitro and in vivo models and paired controls associated with eutopic endometrium in women with endometriosis using E-MenSCs and H-MenSCs. The approach of subcutaneous injection of MenSCs in the abdomen is highlighted due to non-invasive, simple, and safe steps, a short modeling period (1 week), and an excellent modeling success rate (115%), which could improve the repeats and success of endometriotic nude mice model and shorten the modeling period. These novel models could nearly intimate human eutopic endometrial mesenchymal stromal cells in the progress of endometriosis, opening a new path for disease pathology and treatment.