Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
152
result(s) for
"631/92/275"
Sort by:
Beyond PI3Ks: targeting phosphoinositide kinases in disease
in
Disease
2023
Lipid phosphoinositides are master regulators of almost all aspects of a cell’s life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.The potential of therapeutically targeting phosphoinositide kinases (PIKs) beyond the class I PI3Ks is increasingly being realized. Here, Burke et al. describe the structure, function, regulation and roles in disease of all clinically relevant PIKs outside of the class I PI3Ks, assessing potent and specific small-molecule inhibitors in development.
Journal Article
Selective and reversible modification of kinase cysteines with chlorofluoroacetamides
2019
Irreversible inhibition of disease-associated proteins with small molecules is a powerful approach for achieving increased and sustained pharmacological potency. Here, we introduce α-chlorofluoroacetamide (CFA) as a novel warhead of targeted covalent inhibitor (TCI). Despite weak intrinsic reactivity, CFA-appended quinazoline showed high reactivity toward Cys797 of epidermal growth factor receptor (EGFR). In cells, CFA-quinazoline showed higher target specificity for EGFR than the corresponding Michael acceptors in a wide concentration range (0.1–10 μM). The cysteine adduct of the CFA derivative was susceptible to hydrolysis and reversibly yielded intact thiol but was stable in solvent-sequestered ATP-binding pocket of EGFR. This environment-dependent hydrolysis can potentially reduce off-target protein modification by CFA-based drugs. Oral administration of CFA quinazoline NS-062 significantly suppressed tumor growth in a mouse xenograft model. Further, CFA-appended pyrazolopyrimidine irreversibly inhibited Bruton’s tyrosine kinase with higher target specificity. These results demonstrate the utility of CFA as a new class warheads for TCI.
Discovery and exploitation of inherent reaction features of chlorofluoroacetamide (CFA) as a warhead such as low off-target activity and reversible reactivity with cysteine enable specific covalent inhibition of targeted kinases.
Journal Article
Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation
2018
Cyclin-dependent kinase 9 (CDK9), an important regulator of transcriptional elongation, is a promising target for cancer therapy, particularly for cancers driven by transcriptional dysregulation. We characterized NVP-2, a selective ATP-competitive CDK9 inhibitor, and THAL-SNS-032, a selective CDK9 degrader consisting of a CDK-binding SNS-032 ligand linked to a thalidomide derivative that binds the E3 ubiquitin ligase Cereblon (CRBN). To our surprise, THAL-SNS-032 induced rapid degradation of CDK9 without affecting the levels of other SNS-032 targets. Moreover, the transcriptional changes elicited by THAL-SNS-032 were more like those caused by NVP-2 than those induced by SNS-032. Notably, compound washout did not significantly reduce levels of THAL-SNS-032-induced apoptosis, suggesting that CDK9 degradation had prolonged cytotoxic effects compared with CDK9 inhibition. Thus, our findings suggest that thalidomide conjugation represents a promising strategy for converting multi-targeted inhibitors into selective degraders and reveal that kinase degradation can induce distinct pharmacological effects compared with inhibition.
Journal Article
Comprehensive characterization of the Published Kinase Inhibitor Set
2016
A well-characterized library of experimental kinase inhibitors provides leads for targeting the untargeted kinome.
Despite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein–coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis. We identify chemical starting points for designing new chemical probes of orphan kinases and illustrate the utility of these leads by developing a selective inhibitor for the previously untargeted kinases LOK and SLK. Our cellular screens reveal compounds that modulate cancer cell growth and angiogenesis
in vitro
. These reagents and associated data illustrate an efficient way forward to increasing understanding of the historically untargeted kinome.
Journal Article
Discovery and resistance mechanism of a selective CDK12 degrader
2021
Cyclin-dependent kinase 12 (CDK12) is an emerging therapeutic target due to its role in regulating transcription of DNA-damage response (DDR) genes. However, development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. In the present study, we report the rational design and characterization of a CDK12-specific degrader, BSJ-4-116. BSJ-4-116 selectively degraded CDK12 as assessed through quantitative proteomics. Selective degradation of CDK12 resulted in premature cleavage and poly(adenylation) of DDR genes. Moreover, BSJ-4-116 exhibited potent antiproliferative effects, alone and in combination with the poly(ADP-ribose) polymerase inhibitor olaparib, as well as when used as a single agent against cell lines resistant to covalent CDK12 inhibitors. Two point mutations in CDK12 were identified that confer resistance to BSJ-4-116, demonstrating a potential mechanism that tumor cells can use to evade bivalent degrader molecules.
The discovery of a specific CDK12 bivalent degrader, BSJ-4-116, reveals that chronic exposure of MOLT-4 and Jurkat cells to BSJ-4-116 leads to acquired resistance to the compound via point mutations in the CDK12 kinase domain.
Journal Article
Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors
2016
An allosteric inhibitor, EAI045, is reported that is selective for certain drug-resistant EGFR mutants, but spares the wild-type receptor; combination therapy of EAI045 with EGFR-dimerization-blocking antibodies is effective in mouse models of lung cancer driven by mutant versions of EGFR that are resistant to all previously developed inhibitors.
Novel EGFR-directed therapeutics
Currently available small-molecule inhibitors targeting epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases bind the ATP site of the kinase, and therefore typically inhibit a number of 'off-target' kinases owing to the high conservation of this site. In addition, the common binding site of these drugs leads to shared susceptibility to resistance-conferring mutations in EGFR. Here, Michael Eck and colleagues describe an allosteric inhibitor, EAI045, that is selective for certain drug-resistant EGFR mutants but spares the wild-type receptor. Although EAI045 is not effective in blocking EGFR-driven cell proliferation as a single agent, it has synergistic inhibitory activity when combined with an antibody that blocks EGFR dimerization. This combination therapy is effective in mouse models of lung cancer driven by mutant versions of EGFR that are resistant to all previously developed inhibitors.
The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase
1
,
2
, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor
3
,
4
. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant
5
,
6
, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond
7
. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state
8
. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization
9
,
10
, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.
Journal Article
VCP/p97 regulates Beclin-1-dependent autophagy initiation
by
Hill, Sandra M.
,
Wrobel, Lidia
,
Fernandez-Estevez, Marian
in
1-Phosphatidylinositol 3-kinase
,
631/80/313
,
631/80/82
2021
Autophagy is an essential cellular process that removes harmful protein species, and autophagy upregulation may be able to protect against neurodegeneration and various pathogens. Here, we have identified the essential protein VCP/p97 (VCP, valosin-containing protein) as a novel regulator of autophagosome biogenesis, where VCP regulates autophagy induction in two ways, both dependent on Beclin-1. Utilizing small-molecule inhibitors of VCP ATPase activity, we show that VCP stabilizes Beclin-1 levels by promoting the deubiquitinase activity of ataxin-3 towards Beclin-1. VCP also regulates the assembly and activity of the Beclin-1-containing phosphatidylinositol-3-kinase (PI3K) complex I, thus regulating the production of PI(3)P, a key signaling lipid responsible for the recruitment of downstream autophagy factors. A decreased level of VCP, or inhibition of its ATPase activity, impairs starvation-induced production of PI(3)P and limits downstream recruitment of WIPI2, ATG16L and LC3, thereby decreasing autophagosome formation, illustrating an important role for VCP in early autophagy initiation.
The essential protein VCP/p97 regulates autophagosome formation by promoting the deubiquitinase activity of ataxin-3 toward Beclin-1 and also by regulating the assembly of the Beclin-1–PI3K complex I.
Journal Article
Targeting transcription regulation in cancer with a covalent CDK7 inhibitor
2014
Here, a covalent inhibitor targeting cyclin-dependent kinase 7 (CDK7) demonstrates
in vitro
and
in vivo
efficacy against T-cell acute lymphoblastic leukaemia by downregulating oncogenic transcriptional programs.
CDK7 kinase as an anti-cancer target
Pharmacological blockade of transcription is a possible means of targeting cancer cells. Direct pharmacological inhibition of transcription factors has proved problematic, so cyclin-dependent kinase (CDK) family members such as CDK7, which regulate transcription by phosphorylating the carboxy-terminal domain of RNA polymerase II, could provide more druggable targets. Here Nathanael Gray and colleagues use a cell-based screen to identify a novel transcriptional inhibitor, THZ1, that covalently targets CDK7 and has anti-proliferative activity in human T-cell acute lymphoblastic leukaemia cell lines and in a xenograft mouse model. THZ1 is a phenylaminopyrimidine that uses a mechanism combining ATP-site and allosteric covalent binding as a means of attaining potency and selectivity for CDK7.
Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state
1
, but direct pharmacological inhibition of transcription factors has so far proven difficult
2
. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates
3
, including cyclin-dependent kinases (CDKs)
4
. Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of
RUNX1
and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the
RUNX1
super-enhancer and the key role of
RUNX1
in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.
Journal Article
Prospects for pharmacological targeting of pseudokinases
2019
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.Pseudokinases are key components of cellular networks, often acting as scaffolds. Many catalytically active kinases also signal through noncatalytic mechanisms in addition to their enzymatic roles. Kung and Jura discuss strategies to target pseudokinases therapeutically, as well as the progress made so far and lessons learned from inhibitors of active kinases.
Journal Article
Reversible lysine-targeted probes reveal residence time-based kinase selectivity
2022
The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe–kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine.The linking of salicylaldehydes to a kinase binding scaffold resulted in the development of reversible, lysine-targeted covalent kinase inhibitors with enhanced residence time.
Journal Article