Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
116
result(s) for
"639/638/11/2257"
Sort by:
Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin
by
Vianello, Alvise
,
Jensen, Rasmus Lund
,
Vollertsen, Jes
in
639/166/986
,
639/638/11/2257
,
704/172/4081
2019
Humans are potentially exposed to microplastics through food, drink, and air. The first two pathways have received quite some scientific attention, while little is known about the latter. We address the exposure of humans to indoor airborne microplastics using a Breathing Thermal Manikin. Three apartments were investigated, and samples analysed through FPA-µFTIR-Imaging spectroscopy followed by automatic analyses down to 11 µm particle size. All samples were contaminated with microplastics, with concentrations between 1.7 and 16.2 particles m
−3
. Synthetic fragments and fibres accounted, on average, for 4% of the total identified particles, while nonsynthetic particles of protein and cellulose constituted 91% and 4%, respectively. Polyester was the predominant synthetic polymer in all samples (81%), followed by polyethylene (5%), and nylon (3%). Microplastics were typically of smaller size than nonsynthetic particles. As the identified microplastics can be inhaled, these results highlight the potential direct human exposure to microplastic contamination via indoor air.
Journal Article
Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance
by
Cobb, Alexander R.
,
Moore, Tim R.
,
De La Cruz, Florentino B.
in
140/58
,
639/638/11/2257
,
704/106/47/4113
2018
Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.
Large peatlands exist at high latitudes because flooded conditions and cold temperatures slow decomposition, so the presence of (sub)tropical peat is enigmatic. Here the authors show that low-latitude peat is preserved due to lower carbohydrate and greater aromatic content resulting in chemical recalcitrance.
Journal Article
Coherent injection locking of quantum cascade laser frequency combs
by
Strasser, Gottfried
,
Aaron Maxwell Andrews
,
Hillbrand, Johannes
in
Chemical perception
,
Chemoreception
,
Feedback
2019
Quantum cascade laser (QCL) frequency combs are a promising candidate for chemical sensing and biomedical diagnostics1–4. They are electrically pumped and compact, making them an ideal platform for on-chip integration5. Until now, optical feedback is fatal for frequency comb generation in QCLs6. This property limits the potential for integration. Here, we demonstrate coherent electrical injection locking of the repetition frequency to a stabilized radio-frequency oscillator. We prove that the injection-locked QCL spectrum can be phase-locked, resulting in the generation of a frequency comb. We show that injection locking is not only a versatile tool for all-electrical frequency stabilization, but also mitigates the fatal effect of optical feedback. A prototype self-detected dual-comb set-up consisting only of an injection-locked dual-comb chip, a lens and a mirror demonstrates the enormous potential for on-chip dual-comb spectroscopy. These results pave the way to miniaturized and all-solid-state mid-infrared spectrometers.
Journal Article
A mid-infrared lab-on-a-chip for dynamic reaction monitoring
by
Hinkov, Borislav
,
Strasser, Gottfried
,
Lendl, Bernhard
in
639/301/1005/1009
,
639/624/1020/1092
,
639/638/11/2257
2022
Mid-infrared spectroscopy is a sensitive and selective technique for probing molecules in the gas or liquid phase. Investigating chemical reactions in bio-medical applications such as drug production is recently gaining particular interest. However, monitoring dynamic processes in liquids is commonly limited to bulky systems and thus requires time-consuming offline analytics. In this work, we show a next-generation, fully-integrated and robust chip-scale sensor for online measurements of molecule dynamics in a liquid solution. Our fingertip-sized device utilizes quantum cascade technology, combining the emitter, sensing section and detector on a single chip. This enables real-time measurements probing only microliter amounts of analyte in an in situ configuration. We demonstrate time-resolved device operation by analyzing temperature-induced conformational changes of the model protein bovine serum albumin in heavy water. Quantitative measurements reveal excellent performance characteristics in terms of sensor linearity, wide coverage of concentrations, extending from 0.075 mg ml
−1
to 92 mg ml
−1
and a 55-times higher absorbance than state-of-the-art bulky and offline reference systems.
Rapid investigation of chemical reactions is a challenge in bio-medical analysis. Here, the authors demonstrate sensitive in-situ real-time reaction-monitoring of conformational changes in protein solution, based on a fingertip-sized mid-IR lab-on-a-chip.
Journal Article
Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy
by
Hillenbrand, Rainer
,
Poly, Simon
,
Goikoetxea, Monika
in
639/638/11/2257
,
Bandwidths
,
Biomaterials
2017
Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm
−1
. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.
In hyperspectral imaging a broadband spectrum is recorded at each pixel, which creates information-rich images. Here, the authors combine this concept with Fourier transform infrared nanospectroscopy to achieve 5,000-pixel, nanoscale-resolution images at wavelengths between 5 and 10 micrometres.
Journal Article
Optical microresonators as single-particle absorption spectrometers
by
Horak, Erik H.
,
Goldsmith, Randall H.
,
Knapper, Kassandra A.
in
119/118
,
140/125
,
639/624/1075/1083
2016
Optical measurements of nanoscale objects offer major insights into fundamental biological, material and photonic properties. In absorption spectroscopy, sensitivity limits applications at the nanoscale. Here, we present a new single-particle double-modulation photothermal absorption spectroscopy method that employs on-chip optical whispering-gallery-mode (WGM) microresonators as ultrasensitive thermometers. Optical excitation of a nanoscale object on the microresonator produces increased local temperatures that are proportional to the absorption cross-section of the object. We resolve photothermal shifts in the resonance frequency of the microresonator that are smaller than 100 Hz, orders of magnitude smaller than previous WGM sensing schemes. The application of our new technique to single gold nanorods reveals a dense array of sharp Fano resonances arising from the coupling between the localized surface plasmon of the gold nanorod and the WGMs of the resonator, allowing for the exploration of plasmonic–photonic hybridization. In terms of the wider applicability, our approach adds label-free spectroscopic identification to microresonator-based detection schemes.
Single-particle double-modulation absorption spectrometers based on whispering-gallery-mode microresonators achieve sub-100-Hz sensitivity to photothermal resonance shifts and allow for the study of arrays of Fano resonances in the context of plasmonic–photonic hybridization.
Journal Article
Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy
by
Knowles, Tuomas P. J.
,
Vendruscolo, Michele
,
Ruggeri, Francesco Simone
in
132/122
,
140/125
,
147/3
2020
The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10–20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems.
While infrared nanospectroscopy methods based on thermomechanical detection (AFM-IR) enables the acquisition of absorption spectra at the nanoscale, single molecule detection has not been possible so far. Here, the authors present off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR), which allows measuring infrared absorption spectra at the single molecule level in a time scale of seconds with high throughput and demonstrate that the secondary structure of single protein molecules can be determined with this method.
Journal Article
Bond-selective fluorescence imaging with single-molecule sensitivity
by
Wang, Haomin
,
Miao, Kun
,
Lee, Dongkwan
in
Biocompatibility
,
Chemical compounds
,
Electron states
2023
Bioimaging harnessing optical contrasts and chemical specificity is of vital importance in probing complex biology. Vibrational spectroscopy based on mid-infrared excitation can reveal rich chemical information about molecular distributions. However, its full potential for bioimaging is hindered by the achievable sensitivity. Here we report bond-selective fluorescence-detected infrared-excited (BonFIRE) spectro-microscopy. BonFIRE employs two-photon excitation in the mid- and near-infrared to upconvert vibrational excitations to electronic states for fluorescence detection, thus encoding vibrational information into fluorescence. The system utilizes tunable narrowband picosecond pulses to ensure high sensitivity, biocompatibility and robustness for bond-selective biological interrogations over a wide spectrum of reporter molecules. We demonstrate BonFIRE spectral imaging in both fingerprint and cell-silent spectroscopic windows with single-molecule sensitivity for common fluorescent dyes. We then demonstrate BonFIRE imaging on various intracellular targets in fixed and live cells, neurons and tissues, with promise for further vibrational multiplexing. For dynamic bioanalysis in living systems, we implement a high-frequency modulation scheme and demonstrate time-lapse BonFIRE microscopy of live HeLa cells. We expect BonFIRE to expand the bioimaging toolbox by providing a new level of bond-specific vibrational information and facilitate functional imaging and sensing for biological investigations.Two-photon excitation with mid- and near-infrared pulses encodes bond selectivity in fluorescence imaging. Single-molecule imaging and spectroscopy is demonstrated on individual fluorophores as well as various labelled biological targets.
Journal Article
Continuous probing of cold complex molecules with infrared frequency comb spectroscopy
by
Patterson, David
,
Spaun, Ben
,
Doyle, John M.
in
140/125
,
639/624/1107/527/2257
,
639/638/11/2257
2016
Combining cavity-enhanced direct frequency comb spectroscopy with buffer gas cooling enables rapid collection of well-resolved infrared spectra for molecules such as nitromethane, naphthalene and adamantane, confirming the value of the combined approach for studying much larger and more complex molecules than have been probed so far.
Infrared spectra of complex molecules
High-resolution infrared spectroscopy is well suited to the study of the structure and dynamics of small molecules, but becomes impractical for larger and more complex systems. Jun Ye and colleagues have used a combination of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) and buffer gas cooling to produce well-resolved infrared spectra for significantly larger and more complex molecules than have been probed so far using conventional methods. Using CE-DFCS, spectra were obtained for nitromethane, naphthalene and adamantane.
For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time
1
, or by low sensitivity and resolution
2
. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity
3
,
4
, but it still suffers from spectral congestion
5
. Here we show that this problem can be overcome by using buffer gas cooling
6
to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C–H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion
7
,
8
,
9
. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene
10
, adamantane
11
and hexamethylenetetramine
12
. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.
Journal Article
Unravelling the structure of glycosyl cations via cold-ion infrared spectroscopy
2018
Glycosyl cations are the key intermediates during the glycosylation reaction that covalently links building blocks during the synthetic assembly of carbohydrates. The exact structure of these ions remained elusive due to their transient and short-lived nature. Structural insights into the intermediate would improve our understanding of the reaction mechanism of glycosidic bond formation. Here, we report an in-depth structural analysis of glycosyl cations using a combination of cold-ion infrared spectroscopy and first-principles theory. Participating C2 protective groups form indeed a covalent bond with the anomeric carbon that leads to C1-bridged acetoxonium-type structures. The resulting bicyclic structure strongly distorts the ring, which leads to a unique conformation for each individual monosaccharide. This gain in mechanistic understanding fundamentally impacts glycosynthesis and will allow to tailor building blocks and reaction conditions in the future.
Glycosyl cations are key intermediates in glycosylation reactions, but their structure has remained elusive due to their transient nature. Here, the authors perform an in-depth structural analysis and report that C2-participating protective groups induce acetoxonium cations with distinct ring conformations.
Journal Article