Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
29
result(s) for
"639/638/92/436"
Sort by:
A randomised controlled single-centre open-label pharmacokinetic study to examine various approaches of nicotine delivery using electronic cigarettes
by
Gale, Nathan
,
Ebajemito, James K.
,
Proctor, Christopher J.
in
639/638/92/436
,
639/638/92/436/1729
,
639/638/92/436/2388
2020
Smokers who switch completely to e-cigarettes may reduce their relative risk of tobacco-related disease. Effective nicotine delivery from e-cigarettes is important in consumer acceptance. We assessed whether protonated nicotine and e-cigarette devices delivering greater aerosol mass increase nicotine delivery and product liking. A randomised controlled non-blinded eight-arm crossover study was used to assess plasma nicotine pharmacokinetics and product liking for two e-cigarettes (Vype ePen3 and Vype ePen) with various nicotine e-liquid formulations and a conventional cigarette among 24 healthy dual-users of cigarettes and e-cigarettes. Product use and puff count were also assessed. Results show that nicotine bioavailability was greater for Vype ePen3 with greater aerosol mass delivery than for Vype ePen (C
max
,
p
= 0.0073; AUC
0–120 min
,
p
= 0.0102). Protonated nicotine (18 mg/mL, medium protonation) e-liquid yielded higher nicotine bioavailability than unprotonated nicotine (18 mg/mL) e-liquid (C
max
,
p
= 0.0001; AUC
0–120 min
,
p
= 0.0026). There was no significant difference in T
max
between e-liquids. Nicotine bioavailability did not differ between nicotine benzoate formulation (30 mg/mL nicotine, high protonation) and combustible cigarettes (C
max
,
p
= 0.79; AUC
0–120 min
,
p
= 0.13). Vype ePen3 with protonated nicotine delivers nicotine more efficiently with the potential to increase product liking relative to earlier devices using unprotonated e-liquid.
Journal Article
In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics
2016
The development of precision nanomedicines to direct nanostructure-based reagents into tumour-targeted areas remains a critical challenge in clinics. Chemical reaction-mediated localization in response to tumour environmental perturbations offers promising opportunities for rational design of effective nano-theranostics. Here, we present a unique microenvironment-sensitive strategy for localization of peptide-premodified upconversion nanocrystals (UCNs) within tumour areas. Upon tumour-specific cathepsin protease reactions, the cleavage of peptides induces covalent cross-linking between the exposed cysteine and 2-cyanobenzothiazole on neighbouring particles, thus triggering the accumulation of UCNs into tumour site. Such enzyme-triggered cross-linking of UCNs leads to enhanced upconversion emission upon 808 nm laser irradiation, and in turn amplifies the singlet oxygen generation from the photosensitizers attached on UCNs. Importantly, this design enables remarkable tumour inhibition through either intratumoral UCNs injection or intravenous injection of nanoparticles modified with the targeting ligand. Our strategy may provide a multimodality solution for effective molecular sensing and site-specific tumour treatment.
Directing nanomedicines to desired locations - such as tumour sites - is difficult to achieve selectively. Here, the authors develop a method to covalently crosslink peptide-modified upconversion nanocrystals into tumour sites for photodynamic therapy and show
in vivo
tumour inhibition in mice.
Journal Article
A non-hallucinogenic psychedelic analogue with therapeutic potential
2021
The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals
1
. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine—like those of other psychedelic compounds—are long-lasting
2
, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling
3
,
4
. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog—a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.
Psychedelic alkaloids served as lead structures for the development of tabernanthalog, a non-hallucinogenic and non-toxic analogue that reduces alcohol- and heroin-seeking behaviour and produces antidepressant-like effects in rodents.
Journal Article
Transformable liquid-metal nanomedicine
2015
To date, numerous inorganic nanocarriers have been explored for drug delivery systems (DDSs). However, the clinical application of inorganic formulations has often been hindered by their toxicity and failure to biodegrade. We describe here a transformable liquid-metal nanomedicine, based on a core–shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell. This formulation can be simply produced through a sonication-mediated method with bioconjugation flexibility. The resulting nanoparticles loaded with doxorubicin (Dox) have an average diameter of 107 nm and demonstrate the capability to fuse and subsequently degrade under a mildly acidic condition, which facilitates release of Dox in acidic endosomes after cellular internalization. Equipped with hyaluronic acid, a tumour-targeting ligand, this formulation displays enhanced chemotherapeutic inhibition towards the xenograft tumour-bearing mice. This liquid metal-based DDS with fusible and degradable behaviour under physiological conditions provides a new strategy for engineering theranostic agents with low toxicity.
The use of inorganic carriers for drug delivery is often limited by toxicity and persistence of inorganic species in the body. Here, the authors report the use of nanocarriers with a liquid-phase eutectic gallium-indium core capable of delivering doxorubicin and subsequently fusing and degrading under mildly acidic conditions.
Journal Article
Targeting ROS production through inhibition of NADPH oxidases
by
Ronan, Melissa M.
,
Mattevi, Andrea
,
Basile, Lorenzo
in
631/114/2248
,
631/154/1435/2418
,
631/535/1266
2023
NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of
Cylindrospermum stagnale
NOX5 (
cs
NOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of
cs
NOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.
NOXs are vital ROS-producing enzymes with roles in cell function and cancer. Here the authors combine computational and experimental methods to validate inhibitors for human NOX enzymes, opening avenues for redox biology-related cancer drug development.
Journal Article
Isomerization of bioactive acylhydrazones triggered by light or thiols
by
Wang, Yu Tian
,
Tang, Xiaowen
,
Woolley, G. Andrew
in
Biological activity
,
Drug screening
,
Functional groups
2023
The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-d-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.Acylhydrazones are often found in compounds across screening databases, and numerous bioactive acylhydrazones exist. This functional group can isomerize between E and Z in response to light or upon exposure to thiols. Now, E/Z isomerization is found to impact activities of bioactive acylhydrazones and should be routinely analysed.
Journal Article
Reversible modulation of circadian time with chronophotopharmacology
2021
The circadian clock controls daily rhythms of physiological processes. The presence of the clock mechanism throughout the body is hampering its local regulation by small molecules. A photoresponsive clock modulator would enable precise and reversible regulation of circadian rhythms using light as a bio-orthogonal external stimulus. Here we show, through judicious molecular design and state-of-the-art photopharmacological tools, the development of a visible light-responsive inhibitor of casein kinase I (CKI) that controls the period and phase of cellular and tissue circadian rhythms in a reversible manner. The dark isomer of photoswitchable inhibitor
9
exhibits almost identical affinity towards the CKIα and CKIδ isoforms, while upon irradiation it becomes more selective towards CKIδ, revealing the higher importance of CKIδ in the period regulation. Our studies enable long-term regulation of CKI activity in cells for multiple days and show the reversible modulation of circadian rhythms with a several hour period and phase change through chronophotopharmacology.
The circadian clock is an internal mechanism that controls various physiological processes, such as the sleep-wake cycle, but its precise regulation is challenging. Here, the authors develop a visible light-responsive inhibitor of casein kinase I which controls the period and phase of cellular and tissue circadian rhythms in a reversible manner.
Journal Article
Structure-guided development of heterodimer-selective GPCR ligands
by
Schellhorn, Tamara
,
Kaindl, Jonas
,
Clark, Timothy
in
639/638/309/2144
,
639/638/309/2420
,
639/638/92/436
2016
Crystal structures of G protein-coupled receptor (GPCR) ligand complexes allow a rational design of novel molecular probes and drugs. Here we report the structure-guided design, chemical synthesis and biological investigations of bivalent ligands for dopamine D
2
receptor/neurotensin NTS
1
receptor (D
2
R/NTS
1
R) heterodimers. The compounds of types 1–3 consist of three different D
2
R pharmacophores bound to an affinity-generating lipophilic appendage, a polyethylene glycol-based linker and the NTS
1
R agonist NT(8-13). The bivalent ligands show binding affinity in the picomolar range for cells coexpressing both GPCRs and unprecedented selectivity (up to three orders of magnitude), compared with cells that only express D
2
Rs. A functional switch is observed for the bivalent ligands 3b,c inhibiting cAMP formation in cells singly expressing D
2
Rs but stimulating cAMP accumulation in D
2
R/NTS
1
R-coexpressing cells. Moreover, the newly synthesized bivalent ligands show a strong, predominantly NTS
1
R-mediated β-arrestin-2 recruitment at the D
2
R/NTS
1
R-coexpressing cells.
G protein-coupled receptors (GPCRs) are involved in key signalling pathways and represent important targets for the treatment of neurological and psychiatric disorders. Here, the authors describe powerful bivalent ligands that efficiently bind to therapeutically relevant GPCR heterodimers
Journal Article
PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells
2021
Immunolabeling and autoradiography have traditionally been applied as the methods-of-choice to visualize and collect molecular information about physiological and pathological processes. Here, we introduce PharmacoSTORM super-resolution imaging that combines the complementary advantages of these approaches and enables cell-type- and compartment-specific nanoscale molecular measurements. We exploited rational chemical design for fluorophore-tagged high-affinity receptor ligands and an enzyme inhibitor; and demonstrated broad PharmacoSTORM applicability for three protein classes and for cariprazine, a clinically approved antipsychotic and antidepressant drug. Because the neurobiological substrate of cariprazine has remained elusive, we took advantage of PharmacoSTORM to provide in vivo evidence that cariprazine predominantly binds to D
3
dopamine receptors on Islands of Calleja granule cell axons but avoids dopaminergic terminals. These findings show that PharmacoSTORM helps to quantify drug-target interaction sites at the nanoscale level in a cell-type- and subcellular context-dependent manner and within complex tissue preparations. Moreover, the results highlight the underappreciated neuropsychiatric significance of the Islands of Calleja in the ventral forebrain.
The authors introduce PharmacoSTORM single-molecule imaging that uses fluorescent ligands and immunolabeling for cellular and subcellular nanoscale molecular pharmacology. They demonstrate its capabilities by visualizing cariprazine binding to D3 dopamine receptors on Islands of Calleja granule cell axons.
Journal Article
Association of metformin use with Alzheimer’s disease in patients with newly diagnosed type 2 diabetes: a population-based nested case–control study
by
Youngseung Koh
,
Chung Mo Nam
,
Dong-Woo Choi
in
639/638/92/436/108
,
692/699/375/365/1283
,
80 and over
2021
Metformin reduces insulin resistance, which constitutes a pathophysiological connection of diabetes with Alzheimer’s disease (AD), but the evidence of metformin on AD development was still insufficient and conflicting. We investigated AD risk in patients with newly diagnosed type 2 DM treated with metformin. This retrospective, observational, nested case–control study included patients with newly diagnosed type 2 DM obtained from the Korean National Health Insurance Service DM cohort (2002–2017). Among 70,499 dementia-free DM patients, 1675 AD cases were matched to 8375 controls for age, sex, and DM onset and duration. The association between AD and metformin was analyzed by multivariable regression analyses, adjusted for comorbidities and cardiometabolic risk profile. Metformin use was associated with an increased odds of AD (adjusted odds ratio [AOR] 1.50; 95% CI 1.23–1.83). The risk of AD was higher in patients with a longer DM duration. Furthermore, AD risk was significantly high in DM patients with depression (AOR 2.05; 95% CI 1.02–4.12). Given the large number of patients with DM who are taking metformin worldwide, a double-blinded, prospective study is required to determine the long-term cognitive safety of metformin.
Journal Article