Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
807
result(s) for
"639/925/357/551"
Sort by:
Synthetic strategies of supported atomic clusters for heterogeneous catalysis
by
Ji, Shufang
,
Wang, Dingsheng
,
Zhang, Jiatao
in
639/638/77/884
,
639/638/77/887
,
639/925/357/551
2020
Supported atomic clusters with uniform metal sites and definite low-nuclearity are intermediate states between single-atom catalysts (SACs) and nanoparticles in size. Benefiting from the presence of metal–metal bonds, supported atomic clusters can trigger synergistic effects among every metal atom, which contributes to achieving unique catalytic properties different from SACs and nanoparticles. However, the scalable and precise synthesis and atomic-level insights into the structure–properties relationship of supported atomic clusters is a great challenge. This perspective presents the latest progress of the synthesis of supported atomic clusters, highlights how the structure affects catalytic properties, and discusses the limitations as well as prospects.
Supported atomic clusters with precise nuclearity are intermediate states between single-atom catalysts and nanoparticles in size. Here the authors summarize and discuss synthetic strategies of supported atomic clusters with unique catalytic properties for heterogeneous reactions.
Journal Article
General synthesis of single-atom catalysts with high metal loading using graphene quantum dots
2021
Transition-metal single-atom catalysts present extraordinary activity per metal atomic site, but suffer from low metal-atom densities (typically less than 5 wt% or 1 at.%), which limits their overall catalytic performance. Here we report a general method for the synthesis of single-atom catalysts with high transition-metal-atom loadings of up to 40 wt% or 3.8 at.%, representing several-fold improvements compared to benchmarks in the literature. Graphene quantum dots, later interweaved into a carbon matrix, were used as a support, providing numerous anchoring sites and thus facilitating the generation of high densities of transition-metal atoms with sufficient spacing between the metal atoms to avoid aggregation. A significant increase in activity in electrochemical CO2 reduction (used as a representative reaction) was demonstrated on a Ni single-atom catalyst with increased Ni loading.Transition-metal single-atom catalysts display excellent activity per metal atom site, but suffer from low metal atom densities (typically less than 5 wt% or 1 at.%), which limits their overall catalytic performance. Now, the use of a graphene-quantum-dot primary support, later interweaved into a carbon matrix, has enabled the synthesis of single-atom catalysts with high transition-metal atom loadings of up to 40 wt% or 3.84 at.%.
Journal Article
Liquid metal for high-entropy alloy nanoparticles synthesis
2023
High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials
1
–
3
. However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications
4
,
5
. Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24–1.97 Å) and melting points (303–3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission–fusion behaviour during the alloying process.
We discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, realizing the synthesis of high-entropy alloy nanoparticles.
Journal Article
Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption
2022
Aerogel fibers have been recognized as the rising star in the fields of thermal insulation and wearable textiles. Yet, the lack of functionalization in aerogel fibers limits their applications. Herein, we report hygroscopic holey graphene aerogel fibers (LiCl@HGAFs) with integrated functionalities of highly efficient moisture capture, heat allocation, and microwave absorption. LiCl@HGAFs realize the water sorption capacity over 4.15 g g
−1
, due to the high surface area and high water uptake kinetics. Moreover, the sorbent can be regenerated through both photo-thermal and electro-thermal approaches. Along with the water sorption and desorption, LiCl@HGAFs experience an efficient heat transfer process, with a heat storage capacity of 6.93 kJ g
−1
. The coefficient of performance in the heating and cooling mode can reach 1.72 and 0.70, respectively. Notably, with the entrapped water, LiCl@HGAFs exhibit broad microwave absorption with a bandwidth of 9.69 GHz, good impedance matching, and a high attenuation constant of 585. In light of these findings, the multifunctional LiCl@HGAFs open an avenue for applications in water harvest, heat allocation, and microwave absorption. This strategy also suggests the possibility to functionalize aerogel fibers towards even broader applications.
Functionalization of aerogel fibers, characterized by high porosity and low thermal conductivity, to obtain multifunctional materials is highly desirable. Here the authors report hygroscopic holey graphene aerogel fibers hosting LiCl salt, enabling moisture capture, heat allocation, and microwave absorption performance.
Journal Article
Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation
2020
Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Achieving such a precise separation using membranes requires Angstrom scale pores with a high level of pore size uniformity. Herein, we demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization (SARIP). The dynamic, self-assembled network of surfactants facilitates faster and more homogeneous diffusion of amine monomers across the water/hexane interface during interfacial polymerization, thereby forming a polyamide active layer with more uniform sub-nanometre pores compared to those formed via conventional interfacial polymerization. The polyamide membrane formed by SARIP exhibits highly size-dependent sieving of solutes, yielding a step-wise transition from low rejection to near-perfect rejection over a solute size range smaller than half Angstrom. SARIP represents an approach for the scalable fabrication of ultra-selective membranes with uniform nanopores for precise separation of ions and small solutes.
Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Here, the authors demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization.
Journal Article
Large-scale synthesis of graphene and other 2D materials towards industrialization
by
Lee, Young Hee
,
Kim, Soo Min
,
Kim, Ki Kang
in
639/301/1005/1007
,
639/925/357/1018
,
639/925/357/551
2022
The effective application of graphene and other 2D materials is strongly dependent on the industrial-scale manufacturing of films and powders of appropriate morphology and quality. Here, we discuss three state-of-the-art mass production techniques, their limitations, and opportunities for future improvement.
The industrial application of two-dimensional (2D) materials strongly depends on the large-scale manufacturing of high-quality 2D films and powders. Here, the authors analyze three state-of-the art mass production techniques, discussing the recent progress and remaining challenges for future improvements.
Journal Article
Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2
by
Kim, Seong-Wook
,
Karamad, Mohammadreza
,
Kim, Seok-Jin
in
147/135
,
147/143
,
639/301/299/161/886
2020
The one-step electrochemical synthesis of H
2
O
2
is an on-site method that reduces dependence on the energy-intensive anthraquinone process. Oxidized carbon materials have proven to be promising catalysts due to their low cost and facile synthetic procedures. However, the nature of the active sites is still controversial, and direct experimental evidence is presently lacking. Here, we activate a carbon material with dangling edge sites and then decorate them with targeted functional groups. We show that quinone-enriched samples exhibit high selectivity and activity with a H
2
O
2
yield ratio of up to 97.8 % at 0.75 V vs. RHE. Using density functional theory calculations, we identify the activity trends of different possible quinone functional groups in the edge and basal plane of the carbon nanostructure and determine the most active motif. Our findings provide guidelines for designing carbon-based catalysts, which have simultaneous high selectivity and activity for H
2
O
2
synthesis.
The identity of catalytic sites for H
2
O
2
generation in carbon-based materials remains controversial with limited experimental evidence to date. Here, the authors decorate various target functional groups on carbon materials and quinone-enriched samples exhibit the highest activity and selectivity.
Journal Article
Graphene-like nanoribbons periodically embedded with four- and eight-membered rings
2017
Embedding non-hexagonal rings into
sp
2
-hybridized carbon networks is considered a promising strategy to enrich the family of low-dimensional graphenic structures. However, non-hexagonal rings are energetically unstable compared to the hexagonal counterparts, making it challenging to embed non-hexagonal rings into carbon-based nanostructures in a controllable manner. Here, we report an on-surface synthesis of graphene-like nanoribbons with periodically embedded four- and eight-membered rings. The scanning tunnelling microscopy and atomic force microscopy study revealed that four- and eight-membered rings are formed between adjacent perylene backbones with a planar configuration. The non-hexagonal rings as a topological modification markedly change the electronic properties of the nanoribbons. The highest occupied and lowest unoccupied ribbon states are mainly distributed around the eight- and four-membered rings, respectively. The realization of graphene-like nanoribbons comprising non-hexagonal rings demonstrates a controllable route to fabricate non-hexagonal rings in nanoribbons and makes it possible to unveil their unique properties induced by non-hexagonal rings.
Graphene nanoribbons consist of carbon atoms arranged in a hexagonal lattice. Despite non-hexagonal rings generally being more unstable, the authors demonstrate the successful synthesis of graphene-like nanoribbons with periodically embedded four- and eight-membered carbon rings, with tailored electronic properties.
Journal Article
A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte
2015
Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure.
Materials for wearable energy storage devices should be mechanically durable. Here, the authors report a supercapacitor composed of polyacrylic acid dual cross-linked by hydrogen bonding and vinyl hybrid silica nanoparticles which is self-healable and retains performance when stretched up to 600%.
Journal Article
Non defect-stabilized thermally stable single-atom catalyst
2019
Surface-supported isolated atoms in single-atom catalysts (SACs) are usually stabilized by diverse defects. The fabrication of high-metal-loading and thermally stable SACs remains a formidable challenge due to the difficulty of creating high densities of underpinning stable defects. Here we report that isolated Pt atoms can be stabilized through a strong covalent metal-support interaction (CMSI) that is not associated with support defects, yielding a high-loading and thermally stable SAC by trapping either the already deposited Pt atoms or the PtO
2
units vaporized from nanoparticles during high-temperature calcination. Experimental and computational modeling studies reveal that iron oxide reducibility is crucial to anchor isolated Pt atoms. The resulting high concentrations of single atoms enable specific activities far exceeding those of conventional nanoparticle catalysts. This non defect-stabilization strategy can be extended to non-reducible supports by simply doping with iron oxide, thus paving a new way for constructing high-loading SACs for diverse industrially important catalytic reactions.
Developing stable single-atom catalysts (SACs) with a high metal loading remains a challenge due to the difficulty of creating high densities of defects on support materials. Here the authors prepare Pt SACs with high Pt loadings by virtue of strong covalent metal-support interaction, rather than support defects.
Journal Article