Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
200
result(s) for
"692/4028/67/1517/1709"
Sort by:
Global epidemiology of epithelial ovarian cancer
2024
Globally, ovarian cancer is the eighth most common cancer in women, accounting for an estimated 3.7% of cases and 4.7% of cancer deaths in 2020. Until the early 2000s, age-standardized incidence was highest in northern Europe and North America, but this trend has changed; incidence is now declining in these regions and increasing in parts of eastern Europe and Asia. Ovarian cancer is a very heterogeneous disease and, even among the most common type, namely epithelial ovarian cancer, five major clinically and genetically distinct histotypes exist. Most high-grade serous ovarian carcinomas are now recognized to originate in the fimbrial ends of the fallopian tube. This knowledge has led to more cancers being coded as fallopian tube in origin, which probably explains some of the apparent declines in ovarian cancer incidence, particularly in high-income countries; however, it also suggests that opportunistic salpingectomy offers an important opportunity for prevention. The five histotypes share several reproductive and hormonal risk factors, although differences also exist. In this Review, we summarize the epidemiology of this complex disease, comparing the different histotypes, and consider the potential for prevention. We also discuss how changes in the prevalence of risk and protective factors might have contributed to the observed changes in incidence and what this might mean for incidence in the future.Ovarian cancer, accounting for 4.7% of cancer deaths in women in 2020, remains highly prevalent globally. Nonetheless, owing to changes in environmental exposures, the approach to preventive measures and disease classification, both incidence and mortality have been declining in economically developed countries since the early 2000s. Conversely, parts of Asia and eastern Europe have seen increases in the incidence of ovarian cancer over this period of time. In this Review, the authors summarize the epidemiology of ovarian cancer, including the roles of the various risk factors and the potential for prevention.
Journal Article
Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice
2020
Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.
Journal Article
The untapped potential of ascites in ovarian cancer research and treatment
by
Werner, Bonnita
,
Ford, Caroline Elizabeth
,
Hacker, Neville Frederick
in
631/67/1517/1709
,
692/4028/67/1517/1709
,
Ascites
2020
The build-up of fluid in the peritoneal cavity—ascites—is a hallmark of ovarian cancer, the most lethal of all gynaecological malignancies. This remarkable fluid, which contains a variety of cellular and acellular components, is known to contribute to patient morbidity and mortality by facilitating metastasis and contributing to chemoresistance, but remains largely under-researched. In this review, we will critically analyse the evidence associating ascites with metastasis and chemoresistance in ovarian cancer and provide an update on research in the field. We will argue the case for ascites as a unique and accessible substrate for tracking tumour progression and for translational research that will enhance our understanding of this cancer and lead to improvements in patient outcomes.
Journal Article
Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients
by
Macciò, Antonio
,
Tanca, Luciana
,
Gramignano, Giulia
in
13/31
,
692/4028/67/1517/1709
,
692/4028/67/327
2020
The identification of prognostic and predictive markers is crucial for choosing the most appropriate management method for ovarian cancer patients. We aimed to assess the prognostic role of tumor-associated macrophage (TAM) polarization in advanced ovarian cancer patients. We carried out a prospective observational study that included 140 consecutive patients with advanced-stage high-grade serous ovarian cancer as well as patients with other histotypes of ovarian cancer and patients with ovarian metastasis from other sites between June 2013 and December 2018. Patients were enrolled at the time of laparoscopic surgery before receiving any antineoplastic treatment. We found that patients with high-grade serous papillary ovarian cancers had a prevalence of M1 TAMs, a higher M1/M2 ratio, and a longer overall survival (OS) and progression-free survival (PFS) than other patients. Regression analysis confirmed that there was a significant positive association between the M1/M2 ratio and an improved OS, PFS and platinum-free interval (PFI), both in the entire population and in patients stratified according to tumor type and initial surgery. Kaplan-Meier analysis was performed after the patients were divided into 2 groups according to the median M1/M2 ratio and revealed that patients with a high M1/M2 ratio had a higher OS, PFS and PFI than those with a low M1/M2 ratio. In conclusion, the prognostic and predictive role of TAM polarization in the tumor microenvironment could be of great clinical relevance and may allow the early identification of patients who are likely to respond to therapy. Further studies in a larger prospective sample are warranted.
Journal Article
CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer
by
Delbridge, Claire
,
Kiechle, Marion
,
Schmalfeldt, Barbara
in
631/250/127/98
,
631/250/1619
,
631/67/580
2016
Background:
Tumour-infiltrating lymphocytes (TILs) are associated with improved survival in several epithelial cancers. The two chemokines CXCL9 and CXCL10 facilitate chemotactic recruitment of TILs, and their intratumoral accumulation is a conceivable way to improve TIL-dependent immune intervention in cancer. However, the prognostic impact of CXCL9 and CXCL10 in high-grade serous ovarian cancer (HGSC) is largely unknown.
Methods:
One hundred and eighty four cases of HGSC were immunohistochemically analyzed for CXCL9, CXCL10. TILs were assessed using CD3, CD56 and FOXP3 staining. Chemokine regulation was investigated using the ovarian cancer cell lines OV-MZ-6 and SKOV-3.
Results:
High expression of CXCL9 and CXCL10 was associated with an approximately doubled overall survival (
n
=70, CXCL9: HR 0.41;
P
=0.006; CXCL10: HR 0.46;
P
=0.010) which was confirmed in an independent validation set (
n
=114; CXCL9: HR 0.60;
P
=0.019; CXCL10: HR 0.52;
P
=0.005). Expression of CXCR3 ligands significantly correlated with TILs. In human ovarian cancer cell lines the cyclooxygenase (COX) metabolite Prostaglandin E2 was identified as negative regulator of chemokine secretion, whereas COX inhibition by indomethacin significantly upregulated CXCL9 and CXCL10. In contrast, celecoxib, the only COX inhibitor prospectively evaluated for therapy of ovarian cancer, suppressed NF-
κ
B activation and inhibited chemokine release.
Conclusion:
Our results support the notion that CXCL9 and CXCL10 exert tumour-suppressive function by TIL recruitment in human ovarian cancer. COX inhibition by indomethacin, not by celecoxib, may be a promising approach to concomitantly improve immunotherapies.
Journal Article
The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients
2019
Ovarian carcinoma is caused by multiple factors, but its etiology associated with microbes and infection is unknown. Using 16S rRNA high-throughput sequencing methods, the diversity and composition of the microbiota from ovarian cancer tissues (25 samples) and normal distal fallopian tube tissues (25 samples) were analyzed. High-throughput sequencing showed that the diversity and richness indexes were significantly decreased in ovarian cancer tissues compared to tissues from normal distal fallopian tubes. The ratio of the two phyla for
Proteobacteria
/
Firmicutes
was notably increased in ovarian cancer, which revealed that microbial composition change might be associated with the process of ovarian cancer development. In addition, transcriptome-sequencing (RNA-seq) analyses suggested that the transcriptional profiles were statistically different between ovarian carcinoma and normal distal fallopian tubes. Moreover, a set of genes including 84 different inflammation-associated or immune-associated genes, which had been named as the human antibacterial-response genes were also modulated expression. Therefore, we hypothesize that the microbial composition change, as a novel risk factor, may be involving the initiation and progression of ovarian cancer via influencing and regulating the local immune microenvironment of fallopian tubes except for regular pathways.
Journal Article
Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
by
Beer, Lucian
,
Goranova, Teodora
,
Martin-Gonzalez, Paula
in
692/4028/67/1517/1709
,
692/4028/67/2321
,
692/53/2423
2023
High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (
n
= 72). The model is validated in an internal hold-out cohort (
n
= 20) and an independent external patient cohort (
n
= 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.
Response to treatment in high grade serous ovarian carcinoma (HGSOC) is highly variable. Here, the authors leverage a radiogenomic model to predict neoadjuvant chemotherapy response in HGSOC, including clinical data, medical imaging, and blood-based biomarkers such as CA-125 and ctDNA features.
Journal Article
Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance
by
Moyano-Galceran, Lidia
,
Zhang, Kaiyang
,
Grénman, Seija
in
631/67/327
,
692/4028/67/1517/1709
,
692/4028/67/327
2021
Due to its dynamic nature, the evolution of cancer cell-extracellular matrix (ECM) crosstalk, critically affecting metastasis and treatment resistance, remains elusive. Our results show that platinum-chemotherapy itself enhances resistance by progressively changing the cancer cell-intrinsic adhesion signaling and cell-surrounding ECM. Examining ovarian high-grade serous carcinoma (HGSC) transcriptome and histology, we describe the fibrotic ECM heterogeneity at primary tumors and distinct metastatic sites, prior and after chemotherapy. Using cell models from systematic ECM screen to collagen-based 2D and 3D cultures, we demonstrate that both specific ECM substrates and stiffness increase resistance to platinum-mediated, apoptosis-inducing DNA damage via FAK and β1 integrin-pMLC-YAP signaling. Among such substrates around metastatic HGSCs, COL6 was upregulated by chemotherapy and enhanced the resistance of relapse, but not treatment-naïve, HGSC organoids. These results identify matrix adhesion as an adaptive response, driving HGSC aggressiveness via co-evolving ECM composition and sensing, suggesting stromal and tumor strategies for ECM pathway targeting.
Platinum chemotherapy is standard of care in ovarian cancers but treatment resistance commonly develops. Here, the authors show that the extracellular microenvironment is modulated following chemotherapy and the changes in matrix proteins and stiffness alter the cell death response of tumour cells.
Journal Article
Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma
by
Takamatsu, Shiro
,
Matsumura, Noriomi
,
Takaya, Hisamitsu
in
45/61
,
692/4028/67/1517/1709
,
692/4028/67/69
2020
Homologous recombination repair (HRR) pathway deficiency (HRD) is involved in the tumorigenesis and progression of high-grade serous ovarian carcinoma (HGSOC) as well as in the sensitivity to platinum chemotherapy drugs. In this study, we obtained data from The Cancer Genome Atlas (TCGA) on HGSOC and identified scores for the loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions, and calculated the HRD score. We then investigated the relationships among the score, genetic/epigenetic alterations in HRR-related genes, and the clinical data. We found that
BRCA1/2
mutations were enriched in the group with HRD scores ≥63. Compared with the groups with scores ≤62, this group had a good prognosis; we thus considered HRD scores ≥63 to be the best cutoff point for identifying HRD cases in HGSOC. Classification of HGSOC cases by the HRD status revealed a better prognosis for HRD cases caused by genetic alterations (genetic HRD) than those caused by epigenetic changes and those caused by undetermined reasons (p = 0.0002). Among cases without macroscopic residual tumors after primary debulking surgery, 11 of 12 genetic HRD cases survived after the median observation period of 6.6 years, showing remarkably high survival rates (p = 0.0059). In conclusion, HGSOC can be classified into subtypes with different prognoses according to HRD status. This classification could be useful for personalized HGSOC treatment.
Journal Article
Novel Intraperitoneal Treatment With Non-Thermal Plasma-Activated Medium Inhibits Metastatic Potential of Ovarian Cancer Cells
2017
Non-thermal atmospheric pressure plasma has been proposed as a new therapeutic tool for cancer treatment. Recently, plasma-activated medium (PAM) has been widely studied in various cancer types. However, there are only few reports demonstrating the anti-tumour effects of PAM in an animal model reflecting pathological conditions and the accompanying mechanism. Here we investigated the inhibitory effect of PAM on the metastasis of ovarian cancer ES2 cells
in vitro
and
in vivo
. We demonstrated that ES2 cell migration, invasion and adhesion were suppressed by PAM at a certain PAM dilution ratio, whereas cell viability remained unaffected. In an
in vivo
mouse model of intraperitoneal metastasis, PAM inhibited peritoneal dissemination of ES2 cells, resulting in prolonged survival. Moreover, we assessed the molecular mechanism and found that MMP-9 was decreased by PAM. On further investigation, we also found that PAM prevented the activation of the MAPK pathway by inhibiting the phosphorylation of JNK1/2 and p38 MAPK. These findings indicate that PAM inhibits the metastasis of ovarian cancer cells through reduction of MMP-9 secretion, which is critical for cancer cell motility. Our findings suggest that PAM intraperitoneal therapy may be a promising treatment option for ovarian cancer.
Journal Article