Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
313 result(s) for "692/699/67/1990/291/1621/1915"
Sort by:
Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial
High-risk large B-cell lymphoma (LBCL) has poor outcomes with standard first-line chemoimmunotherapy. In the phase 2, multicenter, single-arm ZUMA-12 study (ClinicalTrials.gov NCT03761056) we evaluated axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, as part of first-line treatment in 40 patients with high-risk LBCL. This trial has completed accrual. The primary outcome was complete response rate (CRR). Secondary outcomes were objective response rate (ORR), duration of response (DOR), event-free survival (EFS), progression-free survival (PFS), overall survival (OS), assessment of safety, central nervous system (CNS) relapse and blood levels of CAR T cells and cytokines. The primary endpoint in efficacy-evaluable patients ( n  = 37) was met, with 78% CRR (95% confidence interval (CI), 62–90) and 89% ORR (95% CI, 75–97). As of 17 May 2021 (median follow-up, 15.9 months), 73% of patients remained in objective response; median DOR, EFS and PFS were not reached. Grade ≥3 cytokine release syndrome (CRS) and neurologic events occurred in three patients (8%) and nine patients (23%), respectively. There were no treatment-related grade 5 events. Robust CAR T-cell expansion occurred in all patients with a median time to peak of 8 days. We conclude that axi-cel is highly effective as part of first-line therapy for high-risk LBCL, with a manageable safety profile. In a phase 2 trial, first-line treatment with axicabtagene ciloleucel, an autologous CD19-targeting CAR T-cell therapy, exhibited a high complete response rate and a manageable safety profile in adults with high-risk large B-cell lymphoma.
‘Off-the-shelf’ allogeneic CAR T cells: development and challenges
Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system. The development of next-generation allogeneic CAR T cells to address these issues is an active area of research. In this Review, we analyse the different sources of T cells for optimal allogeneic CAR-T cell therapy and describe the different technological approaches, mainly based on gene editing, to produce allogeneic CAR T cells with limited potential for graft-versus-host disease. These improved allogeneic CAR-T cell products will pave the way for further breakthroughs in the treatment of cancer.The use of allogeneic chimeric antigen receptor T cells from donors has many potential advantages over autologous approaches, such as immediate availability, standardization and the possibility of redosing or combination. This Review analyses the different sources of T cells and technological approaches to produce optimal allogeneic chimeric antigen receptor T cells with limited potential for graft-versus-host disease and increased persistence.
A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma
Axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) have both demonstrated impressive clinical activity in relapsed/refractory (R/R) diffuse large B cell lymphoma (DLBCL). In this study, we analyzed the outcome of 809 patients with R/R DLBCL after two or more previous lines of treatment who had a commercial chimeric antigen receptor (CAR) T cells order for axi-cel or tisa-cel and were registered in the retrospective French DESCAR-T registry study ( NCT04328298 ). After 1:1 propensity score matching ( n  = 418), the best overall response rate/complete response rate (ORR/CRR) was 80%/60% versus 66%/42% for patients treated with axi-cel compared to tisa-cel, respectively ( P  < 0.001 for both ORR and CRR comparisons). After a median follow-up of 11.7 months, the 1-year progression-free survival was 46.6% for axi-cel and 33.2% for tisa-cel (hazard ratio (HR) = 0.61; 95% confidence interval (CI), 0.46–0.79; P  = 0.0003). Overall survival (OS) was also significantly improved after axi-cel infusion compared to after tisa-cel infusion (1-year OS 63.5% versus 48.8%; HR = 0.63; 95% CI, 0.45–0.88; P  = 0.0072). Similar findings were observed using the inverse probability of treatment weighting statistical approach. Grade 1–2 cytokine release syndrome was significantly more frequent with axi-cel than with tisa-cel, but no significant difference was observed for grade ≥3. Regarding immune effector cell-associated neurotoxicity syndrome (ICANS), both grade 1–2 and grade ≥3 ICANS were significantly more frequent with axi-cel than with tisa-cel. In conclusion, our matched comparison study supports a higher efficacy and also a higher toxicity of axi-cel compared to tisa-cel in the third or more treatment line for R/R DLBCL. Analysis of outcomes of over 800 patients with relapsed/refractory diffuse large B cell lymphoma, treated with commercially available CAR T cell therapy, supports higher efficacy and also a higher toxicity of axicabtagene ciloleucel compared to tisagenlecleucel as the third or more treatment line for this type of tumor.
Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy
Approximately 60% of patients with large B cell lymphoma treated with chimeric antigen receptor (CAR) T cell therapies targeting CD19 experience disease progression, and neurotoxicity remains a challenge. Biomarkers associated with resistance and toxicity are limited. In this study, single-cell proteomic profiling of circulating CAR T cells in 32 patients treated with CD19-CAR identified that CD4 + Helios + CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity. Deep profiling demonstrated that this population is non-clonal and manifests hallmark features of T regulatory (T Reg ) cells. Validation cohort analysis upheld the link between higher CAR T Reg cells with clinical progression and less severe neurotoxicity. A model combining expansion of this subset with lactate dehydrogenase levels, as a surrogate for tumor burden, was superior for predicting durable clinical response compared to models relying on each feature alone. These data credential CAR T Reg cell expansion as a novel biomarker of response and toxicity after CAR T cell therapy and raise the prospect that this subset may regulate CAR T cell responses in humans. Single-cell proteomic profiling of circulating CAR T cells in patients treated with CD19-CAR shows that CD4 + Helios + CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53 , CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification. Comprehensive integration of mutational and structural alterations in clinically-annotated DLBCL patient samples provides a novel molecular classification of the disease.
Mechanisms of resistance to CAR T cell therapy
The successes with chimeric antigen receptor (CAR) T cell therapy in early clinical trials involving patients with pre-B cell acute lymphoblastic leukaemia (ALL) or B cell lymphomas have revolutionized anticancer therapy, providing a potentially curative option for patients who are refractory to standard treatments. These trials resulted in rapid FDA approvals of anti-CD19 CAR T cell products for both ALL and certain types of B cell lymphoma — the first approved gene therapies in the USA. However, growing experience with these agents has revealed that remissions will be brief in a substantial number of patients owing to poor CAR T cell persistence and/or cancer cell resistance resulting from antigen loss or modulation. Furthermore, the initial experience with CAR T cells has highlighted challenges associated with manufacturing a patient-specific therapy. Understanding the limitations of CAR T cell therapy will be critical to realizing the full potential of this novel treatment approach. Herein, we discuss the factors that can preclude durable remissions following CAR T cell therapy, with a primary focus on the resistance mechanisms that underlie disease relapse. We also provide an overview of potential strategies to overcome these obstacles in an effort to more effectively incorporate this unique therapeutic strategy into standard treatment paradigms.The development of chimeric antigen receptor (CAR) T cell therapy is an important advance in the treatment of cancer. Herein, the authors outline the key limitations of CAR T cell therapy, with a focus on mechanisms of resistance, and discuss strategies to improve the efficacy and broaden the applicability of this promising therapeutic approach.
Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has led to unprecedented responses in patients with high-risk hematologic malignancies. However, up to 60% of patients still experience disease relapse and up to 80% of patients experience CAR-mediated toxicities, such as cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. We investigated the role of the intestinal microbiome on these outcomes in a multicenter study of patients with B cell lymphoma and leukemia. We found in a retrospective cohort ( n  = 228) that exposure to antibiotics, in particular piperacillin/tazobactam, meropenem and imipenem/cilastatin (P-I-M), in the 4 weeks before therapy was associated with worse survival and increased neurotoxicity. In stool samples from a prospective cohort of CAR T cell recipients ( n  = 48), the fecal microbiome was altered at baseline compared to healthy controls. Stool sample profiling by 16S ribosomal RNA and metagenomic shotgun sequencing revealed that clinical outcomes were associated with differences in specific bacterial taxa and metabolic pathways. Through both untargeted and hypothesis-driven analysis of 16S sequencing data, we identified species within the class Clostridia that were associated with day 100 complete response. We concluded that changes in the intestinal microbiome are associated with clinical outcomes after anti-CD19 CAR T cell therapy in patients with B cell malignancies. In an analysis of adult patients with hematologic malignancies who received anti-CD19 chimeric antigen receptor T cell therapy, baseline gut microbiome composition was correlated with clinical response and treatment with broad-spectrum antibiotics in the four weeks prior to infusion was associated with worse survival and increased neurotoxicity.
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas
Autologous chimeric antigen receptor (CAR) T cell therapies targeting CD19 have high efficacy in large B cell lymphomas (LBCLs), but long-term remissions are observed in less than half of patients, and treatment-associated adverse events, such as immune effector cell-associated neurotoxicity syndrome (ICANS), are a clinical challenge. We performed single-cell RNA sequencing with capture-based cell identification on autologous axicabtagene ciloleucel (axi-cel) anti-CD19 CAR T cell infusion products to identify transcriptomic features associated with efficacy and toxicity in 24 patients with LBCL. Patients who achieved a complete response by positron emission tomography/computed tomography at their 3-month follow-up had three-fold higher frequencies of CD8 T cells expressing memory signatures than patients with partial response or progressive disease. Molecular response measured by cell-free DNA sequencing at day 7 after infusion was significantly associated with clinical response ( P = 0.008), and a signature of CD8 T cell exhaustion was associated ( q = 2.8 × 10 −149 ) with a poor molecular response. Furthermore, a rare cell population with monocyte-like transcriptional features was associated ( P = 0.0002) with high-grade ICANS. Our results suggest that heterogeneity in the cellular and molecular features of CAR T cell infusion products contributes to variation in efficacy and toxicity after axi-cel therapy in LBCL, and that day 7 molecular response might serve as an early predictor of CAR T cell efficacy. Single-cell transcriptomics reveals that the heterogeneity of anti-CD19 CAR T cell infusion products contributes to variability in clinical response, early molecular response and development of immune effector cell-associated neurotoxicity syndrome in patients with large B cell lymphomas.
The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial
Tebotelimab, a bispecific PD-1×LAG-3 DART molecule that blocks both PD-1 and LAG-3, was investigated for clinical safety and activity in a phase 1 dose-escalation and cohort-expansion clinical trial in patients with solid tumors or hematologic malignancies and disease progression on previous treatment. Primary endpoints were safety and maximum tolerated dose of tebotelimab when administered as a single agent ( n  = 269) or in combination with the anti-HER2 antibody margetuximab ( n  = 84). Secondary endpoints included anti-tumor activity. In patients with advanced cancer treated with tebotelimab monotherapy, 68% (184/269) experienced treatment-related adverse events (TRAEs; 22% were grade ≥3). No maximum tolerated dose was defined; the recommended phase 2 dose (RP2D) was 600 mg once every 2 weeks. There were tumor decreases in 34% (59/172) of response-evaluable patients in the dose-escalation cohorts, with objective responses in multiple solid tumor types, including PD-1-refractory disease, and in LAG-3 + non-Hodgkin lymphomas, including CAR-T refractory disease. To enhance potential anti-tumor responses, we tested margetuximab plus tebotelimab. In patients with HER2 + tumors treated with tebotelimab plus margetuximab, 74% (62/84) had TRAEs (17% were grade ≥3). The RP2D was 600 mg once every 3 weeks. The confirmed objective response rate in these patients was 19% (14/72), including responses in patients typically not responsive to anti-HER2/anti-PD-1 combination therapy. ClinicalTrials.gov identifier: NCT03219268 . The bispecific molecule tebotelimab, which blocks both PD-1 and LAG-3, is well tolerated as a monotherapy and in combination with the anti-HER-2 antibody margetuximab and elicits encouraging clinical activity in solid tumors with high LAG-3 levels and/or expression of IFN-γ-regulated genes.
Impact of tumor microenvironment on efficacy of anti-CD19 CAR T cell therapy or chemotherapy and transplant in large B cell lymphoma
The phase 3 ZUMA-7 trial in second-line large B cell lymphoma demonstrated superiority of anti-CD19 CAR T cell therapy (axicabtagene ciloleucel (axi-cel)) over standard of care (SOC; salvage chemotherapy followed by hematopoietic transplantation) ( NCT03391466 ). Here, we present a prespecified exploratory analysis examining the association between pretreatment tumor characteristics and the efficacy of axi-cel versus SOC. B cell gene expression signature (GES) and CD19 expression associated significantly with improved event-free survival for axi-cel ( P  = 0.0002 for B cell GES; P  = 0.0165 for CD19 expression) but not SOC ( P  = 0.9374 for B cell GES; P  = 0.5526 for CD19 expression). Axi-cel showed superior event-free survival over SOC irrespective of B cell GES and CD19 expression ( P  = 8.56 × 10 –9 for B cell GES high; P  = 0.0019 for B cell GES low; P  = 3.85 × 10 –9 for CD19 gene high; P  = 0.0017 for CD19 gene low). Low CD19 expression in malignant cells correlated with a tumor GES consisting of immune-suppressive stromal and myeloid genes, highlighting the inter-relation between malignant cell features and immune contexture substantially impacting axi-cel outcomes. Tumor burden, lactate dehydrogenase and cell-of-origin impacted SOC more than axi-cel outcomes. T cell activation and B cell GES, which are associated with improved axi-cel outcome, decreased with increasing lines of therapy. These data highlight differences in resistance mechanisms to axi-cel and SOC and support earlier intervention with axi-cel. Analysis of the pivotal phase 3 ZUMA-7 trial identifies tumor gene expression signatures that are uniquely predictive of anti-CD19 CAR T cell response and event-free survival in second-line treatment for patients with relapsed or refractory large B cell lymphoma.