Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
76 result(s) for "692/700/3032/3140"
Sort by:
The oral microbiota: dynamic communities and host interactions
The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
The oral microbiome – an update for oral healthcare professionals
Key Points Summarises the benefits of a health-promoting oral microbiome for oral and general health. Provides an overview of coevolution between humans and oral microbes. Reviews factors associated with dysbiosis and implications for caries and periodontal disease. Highlights existing strategies to preserve a balanced oral microbiome for practitioners and patients to follow. For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare.
Effects of Chlorhexidine mouthwash on the oral microbiome
Following a single blind, cross-over and non-randomized design we investigated the effect of 7-day use of chlorhexidine (CHX) mouthwash on the salivary microbiome as well as several saliva and plasma biomarkers in 36 healthy individuals. They rinsed their mouth (for 1 min) twice a day for seven days with a placebo mouthwash and then repeated this protocol with CHX mouthwash for a further seven days. Saliva and blood samples were taken at the end of each treatment to analyse the abundance and diversity of oral bacteria, and pH, lactate, glucose, nitrate and nitrite concentrations. CHX significantly increased the abundance of Firmicutes and Proteobacteria, and reduced the content of Bacteroidetes, TM7, SR1 and Fusobacteria. This shift was associated with a significant decrease in saliva pH and buffering capacity, accompanied by an increase in saliva lactate and glucose levels. Lower saliva and plasma nitrite concentrations were found after using CHX, followed by a trend of increased systolic blood pressure. Overall, this study demonstrates that mouthwash containing CHX is associated with a major shift in the salivary microbiome, leading to more acidic conditions and lower nitrite availability in healthy individuals.
Oral microflora and pregnancy: a systematic review and meta-analysis
Understanding changes in oral flora during pregnancy, its association to maternal health, and its implications to birth outcomes is essential. We searched PubMed, Embase, Web of Science, and Cochrane Library in May 2020 (updated search in April and June 2021), and conducted a systematic review and meta-analyses to assess the followings: (1) oral microflora changes throughout pregnancy, (2) association between oral microorganisms during pregnancy and maternal oral/systemic conditions, and (3) implications of oral microorganisms during pregnancy on birth outcomes. From 3983 records, 78 studies were included for qualitative assessment, and 13 studies were included in meta-analysis. The oral microflora remains relatively stable during pregnancy; however, pregnancy was associated with distinct composition/abundance of oral microorganisms when compared to postpartum/non-pregnant status. Oral microflora during pregnancy appears to be influenced by oral and systemic conditions (e.g. gestational diabetes mellitus, pre-eclampsia, etc.). Prenatal dental care reduced the carriage of oral pathogens (e.g. Streptococcus mutans ). The Porphyromonas gingivalis in subgingival plaque was more abundant in women with preterm birth. Given the results from meta-analyses were inconclusive since limited studies reported outcomes on the same measuring scale, more future studies are needed to elucidate the association between pregnancy oral microbiota and maternal oral/systemic health and birth outcomes.
Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans
Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans . Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX , the alternative sigma factor of S. mutans , which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX -inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS , sigX , bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans , resulting in fundamentally changed virulence properties of the caries pathogen.
In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption
Caries is associated with shifts of microbiota in dental biofilms and primarily driven by frequent sucrose consumption. Data on environmentally induced in vivo microbiota shifts are scarce therefore we investigated the influence of frequent sucrose consumption on the oral biofilm. Splint systems containing enamel slabs were worn for 3 × 7 days with 7-day intervals to obtain oral biofilm samples. After a three-month dietary change of sucking 10 g of sucrose per day in addition to the regular diet, biofilm was obtained again at the end of the second phase. The microbiota was analysed using Illumina MiSeq amplicon sequencing (v1-v2 region). In addition, roughness of the enamel surface was measured with laser scanning microscopy. The sucrose phase resulted in significant differences in beta-diversity and significantly decreased species richness. It was marked by a significant increase in abundance of streptococci, specifically Streptococcus gordonii , Streptococcus parasanguinis and Streptococcus sanguinis . Enamel surface roughness began to increase, reflecting initial impairment of dental enamel surface. The results showed that frequent sucrose consumption provoked compositional changes in the microbiota, leading to an increase of non-mutans streptococci, hence supporting the extended ecological plaque hypothesis and emphasizing the synergy of multiple bacterial species in the development of caries.
Mechanical properties and sustainable bacterial resistance effect of strontium-modified phosphate-based glass microfiller in dental composite resins
Dental composite resins are widely used in dental restorations. However, their clinical application is limited by the occurrence of secondary caries. Strontium-modified phosphate-based glass (Sr-PBG) is a material known to have a sustainable bacterial resistance effect. The mechanical properties (in particular, flexural strength, modulus of elasticity, and hardness) of dental materials determine their function. Therefore, this study aimed to investigate the mechanical and ion-releasing properties as well as the sustainable bacterial resistance effect of bioactive resin composites containing Sr-PBG. The data were analyzed by ANOVA and Tuckey’s tests ( p  < 0.05). We incorporated a Sr-PBG microfiller at 3, 6, and 9 wt.% concentrations into a commercially available composite resin and investigated the mechanical properties (flexural strength, elastic modulus, and micro hardness), ion release characteristics, and color of the resultant resins. In addition, we examined the antibacterial effects of the composite resins against Streptococcus mutans ( S. mutans ). The mechanical properties of the Sr-PBG groups differed only slightly from those of the control group ( p  > 0.05). However, the optical density at 600 nm of S. mutans incubated on the experimental group was significantly lower compared to that observed with the control ( p  < 0.05) both before and after thermocycling between 5 and 55 ℃ for 850 cycles (dwell time: 45 s). Therefore, strontium-modified resin materials exhibited a sustainable bacterial resistance effect in vitro while maintaining some of the mechanical properties of ordinary acrylic resins.
Of the article: Microbiological assessment of a herbal mouth rinse for treating chronic generalized periodontitis
Periodontal diseases remain highly prevalent across age groups, often aggravated by poor oral hygiene, occlusal anomalies, and defective restorations. This study evaluated the effectiveness of Art-Dentale Expert mouthwash against major periodontopathogens in patients with mild chronic generalized periodontitis (CGP) using PCR diagnostics. Thirty-nine patients with CGP were randomized into a main group (Art-Dentale Expert) and a control group (Chlorhexidine). Gingival pocket samples were collected before treatment and at 7 days, 1 month, and 6 months. Four periodontopathogens (P. gingivalis, T. forsythia, T. denticola, and P. intermedia) were analyzed. The results obtained were processed statistically. Both rinses significantly reduced P. gingivalis and T. forsythia at 7 days, with Chlorhexidine showing a sharper initial decline in P. gingivalis. At 6 months, P. intermedia was completely absent in the Art-Dentale Expert group ( p  = 0.0209), whereas it persisted in 10% of controls. Art-Dentale Expert demonstrated sustained efficacy, particularly against T. denticola and P. intermedia. These findings support its role as an effective adjunct in periodontal therapy.
Factors influencing oral microbiome analysis: from saliva sampling methods to next-generation sequencing platforms
The exploration of oral microbiome has been increasing due to its relatedness with various systemic diseases, but standardization of saliva sampling for microbiome analysis has not been established, contributing to the lack of data comparability. Here, we evaluated the factors that influence the microbiome data. Saliva samples were collected by the two collection methods (passive drooling and mouthwash) using three saliva-preservation methods (OMNIgene, DNA/RNA shield, and simple collection). A total of 18 samples were sequenced by both Illumina short-read and Nanopore long-read next-generation sequencing (NGS). The component of the oral microbiome in each sample was compared with alpha and beta diversity and the taxonomic abundances, to find out the effects of factors on oral microbiome data. The alpha diversity indices of the mouthwash sample were significantly higher than that of the drooling group with both short-read and long-read NGS, while no significant differences in microbial diversities were found between the three saliva-preservation methods. Our study shows mouthwash and simple collection are not inferior to other sample collection and saliva-preservation methods, respectively. This result is promising since the convenience and cost-effectiveness of mouthwash and simple collection can simplify the saliva sample preparation, which would greatly help clinical operators and lab workers.
Comparison of oral microbiome profiles in 18-month-old infants and their parents
The onset and progress of dental caries and periodontal disease is associated with the oral microbiome. Therefore, it is important to understand the factors that influence oral microbiome formation. One of the factors that influence oral microbiome formation is the transmission of oral bacteria from parents. However, it remains unclear when the transmission begins, and the difference in contributions of father and mother. Here, we focused on the oral microbiome of 18-month-old infants, at which age deciduous dentition is formed and the oral microbiome is likely to become stable, with that of their parents. We collected saliva from forty 18-month-old infants and their parents and compared the diversity and composition of the microbiome using next-generation sequencing of 16S rRNA genes. The results showed that microbial diversity in infants was significantly lower than that in parents and composition of microbiome were significantly different between infants and parents. Meanwhile, the microbiome of the infants was more similar to that of their mothers than unrelated adults. The bacteria highly shared between infants and parents included not only commensal bacteria but also disease related bacteria. These results suggested that the oral microbiome of the parents influences that of their children aged < 18 months.