Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "7α-dehydroxylation"
Sort by:
Anti-Adipogenic Effect of Theabrownin Is Mediated by Bile Acid Alternative Synthesis via Gut Microbiota Remodeling
Theabrownin is one of the most bioactive compounds in Pu-erh tea. Our previous study revealed that the hypocholesterolemic effect of theabrownin was mediated by the modulation of bile salt hydrolase (BSH)-enriched gut microbiota and bile acid metabolism. In this study, we demonstrated that theabrownin ameliorated high-fat-diet (HFD)-induced obesity by modifying gut microbiota, especially those with 7α-dehydroxylation on the species level, and these changed microbes were positively correlated with secondary bile acid (BA) metabolism. Thus, altered intestinal BAs resulted in shifting bile acid biosynthesis from the classic to the alternative pathway. This shift changed the BA pool by increasing non-12α-hydroxylated-BAs (non-12OH-BAs) and decreasing 12α-hydroxylated BAs (12OH-BAs), which improved energy metabolism in white and brown adipose tissue. This study showed that theabrownin was a potential therapeutic modality for obesity and other metabolic disorders via gut microbiota-driven bile acid alternative synthesis.
Clostridium scindens: history and current outlook for a keystone species in the mammalian gut involved in bile acid and steroid metabolism
Abstract Clostridium scindens is a keystone bacterial species in the mammalian gut that, while low in abundance, has a significant impact on bile acid and steroid metabolism. Numerous studies indicate that the two most studied strains of C. scindens (i.e. ATCC 35704 and VPI 12708) are important for a myriad of physiological processes in the host. We focus on both historical and current microbiological and molecular biology work on the Hylemon–Björkhem pathway and the steroid-17,20-desmolase pathway that were first discovered in C. scindens. Our most recent analysis now calls into question whether strains currently defined as C. scindens represent two separate taxonomic groups. Future directions include developing genetic tools to further explore the physiological role of bile acid and steroid metabolism by strains of C. scindens and the causal role of these pathways in host physiology and disease. This review focuses on both historical and current microbiological and molecular biology work on the Hylemon–Björkhem pathway and the steroid-17,20-desmolase pathway that were first discovered in Clostridium scindens.
Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model
Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as . Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is . Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied . Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species \"oligo-mouse microbiota\" (Oligo-MM ). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to infection (CDI). Amendment of Oligo-MM with normalized the large intestinal bile acid composition by reconstituting 7α-dehydroxylation. These changes had only minor effects on the composition of the native Oligo-MM , but significantly decreased early large intestinal colonization and pathogenesis. The delayed pathogenesis of in -colonized mice was associated with breakdown of cecal microbial bile acid transformation.
Pangenome Analysis of Clostridium scindens: A Collection of Diverse Bile Acid- and Steroid-Metabolizing Commensal Gut Bacterial Strains
Clostridium scindens is a commensal gut bacterium capable of forming the secondary bile acids as well as converting glucocorticoids to androgens. Historically, only two strains, C. scindens ATCC 35704 and C. scindens VPI 12708, have been characterized to any significant extent. The formation of secondary bile acids is important in the etiology of cancers of the GI tract and in the prevention of Clostridioides difficile infection. We determined the presence and absence of bile acid inducible (bai) and steroid-17,20-desmolase (des) genes among C. scindens strains and the features of the pangenome of 34 cultured strains of C. scindens and a set of 200 metagenome-assembled genomes (MAGs) to understand the variability among strains. The results indicate that the C. scindens cultivars have an open pangenome with 12,720 orthologous gene groups and a core genome with 1630 gene families, in addition to 7051 and 4039 gene families in the accessory and unique (i.e., strain-exclusive) genomes, respectively. The pangenome profile including the MAGs also proved to be open. Our analyses reveal that C. scindens strains are distributed into two clades, indicating the possible onset of C. scindens separation into two species, as suggested by gene content, phylogenomic, and average nucleotide identity (ANI) analyses. This study provides insight into the structure and function of the C. scindens pangenome, offering a genetic foundation of significance for many aspects of research on the intestinal microbiota and bile acid metabolism.
Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems
Isoprenoic compounds play a major part in the global carbon cycle. Biosynthesis and mineralization by aerobic bacteria have been intensively studied. This review describes our knowledge on the anaerobic metabolism of isoprenoids, mainly by denitrifying and fermentative bacteria. Nitrate-reducing β-Proteobacteria were isolated on monoterpenes as sole carbon source and electron donor. Thauera spp. were obtained on the oxygen-containing monoterpenes linalool, menthol, and eucalyptol. Several strains of Alcaligenes defragrans were isolated on unsaturated monoterpenes as growth substrates. A novel denitrifying β-Proteobacterium, strain 72Chol, mineralizes cholesterol completely to carbon dioxide. Physiological studies showed the presence of several oxidative pathways in these microorganisms. Investigations by organic geochemists indicate possible contributions of anaerobes to early diagenetic processes. One example, the formation of p-cymene from monoterpenes, could indeed be detected in methanogenic enrichment cultures. In man, cholic acid (CA) and chenodeoxycholic acid (CDCA), are synthesized in the liver from cholesterol. During their enterohepatic circulation, bile acids are biotransformed by the intestinal microflora into a variety of metabolites. Known bacterial biotransformations of conjugated bile acids include: deconjugation, oxidation of hydroxy groups at C-3, C-7 and C-12 with formation of oxo bile acids and reduction of these oxo groups to either α- or β-configuration. Quantitatively, the most important bacterial biotransformation is the 7α-dehydroxylation of CA and CDCA yielding deoxycholic acid and lithocholic acid, respectively. The 7α-dehydroxylation of CA occurs via a novel six-step biochemical pathway. The genes encoding several enzymes that either transport bile acids or catalyze various reactions in the 7α-dehydroxylation pathway of Eubacterium sp. strain VPI 12708 have been cloned, expressed in Escherichia coli, purified, and characterized.
Bile acid metabolism by fresh human colonic contents: a comparison of caecal versus faecal samples
BACKGROUND Deoxycholic acid (DCA), implicated in the pathogenesis of gall stones and colorectal cancer, is mainly formed by bacterial deconjugation (cholylglycine hydrolase (CGH)) and 7α-dehydroxylation (7α-dehydroxylase (7α-DH)) of conjugated cholic acid (CA) in the caecum/proximal colon. Despite this, most previous studies of CGH and 7α-DH have been in faeces rather than in caecal contents. In bacteria, CA increases 7α-DH activity by substrate-enzyme induction but little is known about CA concentrations or CA/7α-DH induction in the human colon. AIMS AND METHODS Therefore, in fresh “faeces”, and in caecal aspirates obtained during colonoscopy from 20 patients, we: (i) compared the activities of CGH and 7α-DH, (ii) measured 7α-DH in patients with “low” and “high” percentages of DCA in fasting serum (less than and greater than the median), (iii) studied CA concentrations in the right and left halves of the colon, and examined the relationships between (iv) 7α-DH activity and CA concentration in caecal samples (evidence of substrate-enzyme induction), and (v) 7α-DH and per cent DCA in serum. RESULTS Although mean CGH activity in the proximal colon (18.3 (SEM 4.40) ×10−2 U/mg protein) was comparable with that in “faeces” (16.0 (4.10) ×10− 2 U/mg protein) , mean 7α-DH in the caecum (8.54 (1.08) ×10-4 U/mg protein) was higher (p<0.05) than that in the left colon (5.72 (0.85) ×10-4 U/mg protein). At both sites, 7α-DH was significantly greater in the “high” than in the “low” serum DCA subgroups. CA concentrations in the right colon (0.94 (0.08) μmol/ml) were higher than those in the left (0.09 (0.03) μmol/ml; p<0.001) while in the caecum (but not in the faeces) there was a weak (r=0.58) but significant (p<0.005) linear relationship between 7α-DH and CA concentration. At both sites, 7α-DH was linearly related (p<0.005) to per cent DCA in serum. INTERPRETATION/SUMMARY These results: (i) confirm that there are marked regional differences in bile acid metabolism between the right and left halves of the colon, (ii) suggest that caecal and faecal 7α-DH influence per cent DCA in serum (and, by inference, in bile), and (iii) show that the substrate CA induces the enzyme 7α-DH in the caecum.
Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems
Abstract Isoprenoic compounds play a major part in the global carbon cycle. Biosynthesis and mineralization by aerobic bacteria have been intensively studied. This review describes our knowledge on the anaerobic metabolism of isoprenoids, mainly by denitrifying and fermentative bacteria. Nitrate-reducing β-Proteobacteria were isolated on monoterpenes as sole carbon source and electron donor. Thauera spp. were obtained on the oxygen-containing monoterpenes linalool, menthol, and eucalyptol. Several strains of Alcaligenes defragrans were isolated on unsaturated monoterpenes as growth substrates. A novel denitrifying β-Proteobacterium, strain 72Chol, mineralizes cholesterol completely to carbon dioxide. Physiological studies showed the presence of several oxidative pathways in these microorganisms. Investigations by organic geochemists indicate possible contributions of anaerobes to early diagenetic processes. One example, the formation of p-cymene from monoterpenes, could indeed be detected in methanogenic enrichment cultures. In man, cholic acid (CA) and chenodeoxycholic acid (CDCA), are synthesized in the liver from cholesterol. During their enterohepatic circulation, bile acids are biotransformed by the intestinal microflora into a variety of metabolites. Known bacterial biotransformations of conjugated bile acids include: deconjugation, oxidation of hydroxy groups at C-3, C-7 and C-12 with formation of oxo bile acids and reduction of these oxo groups to either α- or β-configuration. Quantitatively, the most important bacterial biotransformation is the 7α-dehydroxylation of CA and CDCA yielding deoxycholic acid and lithocholic acid, respectively. The 7α-dehydroxylation of CA occurs via a novel six-step biochemical pathway. The genes encoding several enzymes that either transport bile acids or catalyze various reactions in the 7α-dehydroxylation pathway of Eubacterium sp. strain VPI 12708 have been cloned, expressed in Escherichia coli, purified, and characterized.