Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,317
result(s) for
"704/829/2737"
Sort by:
A global assessment of marine heatwaves and their drivers
by
Perkins-Kirkpatrick, Sarah E.
,
Alexander, Lisa V.
,
Burrows, Michael T.
in
704/106
,
704/829/2737
,
Case studies
2019
Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982–2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe – an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies.
Impacts from marine heatwaves can be devastating, but understanding their causes is largely based on case studies. Here the authors carry out a global assessment of literature and sea surface temperatures to identify important local processes, climate modes and teleconnections that drive marine heatwaves regionally.
Journal Article
Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century
by
Ranasinghe, Roshanka
,
Lincke, Daniel
,
Hinkel, Jochen
in
704/106/694/2739
,
704/106/694/2786
,
704/829/2737
2020
Global models of tide, storm surge, and wave setup are used to obtain projections of episodic coastal flooding over the coming century. The models are extensively validated against tide gauge data and the impact of uncertainties and assumptions on projections estimated in detail. Global “hotspots” where there is projected to be a significant change in episodic flooding by the end of the century are identified and found to be mostly concentrated in north western Europe and Asia. Results show that for the case of, no coastal protection or adaptation, and a mean RCP8.5 scenario, there will be an increase of 48% of the world’s land area, 52% of the global population and 46% of global assets at risk of flooding by 2100. A total of 68% of the global coastal area flooded will be caused by tide and storm events with 32% due to projected regional sea level rise.
Journal Article
Global mass of buoyant marine plastics dominated by large long-lived debris
by
Lobelle, Delphine
,
van Sebille, Erik
,
Kaandorp, Mikael L. A
in
Budgets
,
Buoyancy
,
Environmental impact
2023
The fate of plastics that enter the ocean is a longstanding puzzle. Recent estimates of the oceanic input of plastic are one to two orders of magnitude larger than the amount measured floating at the surface. This discrepancy could be due to overestimation of input estimates, processes removing plastic from the surface ocean or fragmentation and degradation. Here we present a 3D global marine mass budget of buoyant plastics that resolves this discrepancy. We assimilate observational data from different marine reservoirs, including coastlines, the ocean surface, and the deep ocean, into a numerical model, considering particle sizes of 0.1–1,600.0 mm. We find that larger plastics (>25 mm) contribute to more than 95% of the initially buoyant marine plastic mass: 3,100 out of 3,200 kilotonnes for the year 2020. Our model estimates an ocean plastic input of about 500 kilotonnes per year, less than previous estimates. Together, our estimated total amount and annual input of buoyant marine plastic litter suggest there is no missing sink of marine plastic pollution. The results support higher residence times of plastics in the marine environment compared with previous model studies, in line with observational evidence. Long-lived plastic pollution in the world’s oceans, which our model suggests is continuing to increase, could negatively impact ecosystems without countermeasures and prevention strategies.A 3D global marine plastic mass budget suggests that larger items contribute more than 95% of buoyant plastics by mass and are longer lived than previously estimated, which suggests there is no missing sink of marine plastic pollution.
Journal Article
Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard
2018
Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world’s coastlines. In this work we present probabilistic projections of ESLs for the present century taking into consideration changes in mean sea level, tides, wind-waves, and storm surges. Between the year 2000 and 2100 we project a very likely increase of the global average 100-year ESL of 34–76 cm under a moderate-emission-mitigation-policy scenario and of 58–172 cm under a business as usual scenario. Rising ESLs are mostly driven by thermal expansion, followed by contributions from ice mass-loss from glaciers, and ice-sheets in Greenland and Antarctica. Under these scenarios ESL rise would render a large part of the tropics exposed annually to the present-day 100-year event from 2050. By the end of this century this applies to most coastlines around the world, implying unprecedented flood risk levels unless timely adaptation measures are taken.
Extreme sea levels are a flood risk along the world’s coastlines. Here the authors carry out probabilistic projections of extreme sea levels and show that for the present century coastal flood hazards will increase significantly along most of the global coastlines.
Journal Article
Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables
2019
Two thirds of the surface of our planet are covered by water and are still poorly instrumented, which has prevented the earth science community from addressing numerous key scientific questions. The potential to leverage the existing fiber optic seafloor telecom cables that criss-cross the oceans, by using them as dense arrays of seismo-acoustic sensors, remains to be evaluated. Here, we report Distributed Acoustic Sensing measurements on a 41.5 km-long telecom cable that is deployed offshore Toulon, France. Our observations demonstrate the capability to monitor with unprecedented details the ocean-solid earth interactions from the coast to the abyssal plain, in addition to regional seismicity (e.g., a magnitude 1.9 micro-earthquake located 100 km away) with signal characteristics comparable to those of a coastal seismic station.
Existing fibers beneath the world’s oceans can in principle be used as seismic sensors, but the full potential of this possibility has yet to be explored. Here, the authors demonstrate the feasibility of distributed acoustic sensing in a coastal fiber as a sensor for earthquakes and wave phenomena.
Journal Article
A global analysis of extreme coastal water levels with implications for potential coastal overtopping
by
Ranasinghe, Roshanka
,
Diaz, Harold
,
Almeida, Luis Pedro
in
704/4111
,
704/829/2737
,
Anthropogenic factors
2021
Climate change and anthropogenic pressures are widely expected to exacerbate coastal hazards such as episodic coastal flooding. This study presents global-scale potential coastal overtopping estimates, which account for not only the effects of sea level rise and storm surge, but also for wave runup at exposed open coasts. Here we find that the globally aggregated annual overtopping hours have increased by almost 50% over the last two decades. A first-pass future assessment indicates that globally aggregated annual overtopping hours will accelerate faster than the global mean sea-level rise itself, with a clearly discernible increase occurring around mid-century regardless of climate scenario. Under RCP 8.5, the globally aggregated annual overtopping hours by the end of the 21
st
-century is projected to be up to 50 times larger compared to present-day. As sea level continues to rise, more regions around the world are projected to become exposed to coastal overtopping.
As sea levels rise, coasts are being increasingly threatened by overtopping caused by the combination of sea level rise, storm surge and wave runup. Here the authors find that global coastal overtopping has increased by over 50% in the last two decades, and under a RCP 8.5 scenario this could increase up to 50 times by 2100 compared to today.
Journal Article
Increased occurrences of consecutive La Niña events under global warming
2023
Most El Niño events occur sporadically and peak in a single winter
1
–
3
, whereas La Niña tends to develop after an El Niño and last for two years or longer
4
–
7
. Relative to single-year La Niña, consecutive La Niña features meridionally broader easterly winds and hence a slower heat recharge of the equatorial Pacific
6
,
7
, enabling the cold anomalies to persist, exerting prolonged impacts on global climate, ecosystems and agriculture
8
–
13
. Future changes to multi-year-long La Niña events remain unknown. Here, using climate models under future greenhouse-gas forcings
14
, we find an increased frequency of consecutive La Niña ranging from 19 ± 11% in a low-emission scenario to 33 ± 13% in a high-emission scenario, supported by an inter-model consensus stronger in higher-emission scenarios. Under greenhouse warming, a mean-state warming maximum in the subtropical northeastern Pacific enhances the regional thermodynamic response to perturbations, generating anomalous easterlies that are further northward than in the twentieth century in response to El Niño warm anomalies. The sensitivity of the northward-broadened anomaly pattern is further increased by a warming maximum in the equatorial eastern Pacific. The slower heat recharge associated with the northward-broadened easterly anomalies facilitates the cold anomalies of the first-year La Niña to persist into a second-year La Niña. Thus, climate extremes as seen during historical consecutive La Niña episodes probably occur more frequently in the twenty-first century.
Analysis of climate models under future greenhouse-gas forcings shows that the frequency of consecutive La Niña events will increase, driven by ocean–atmosphere feedbacks that slow the heat recharge of the equatorial Pacific.
Journal Article
Current Atlantic Meridional Overturning Circulation weakest in last millennium
2021
The Atlantic Meridional Overturning Circulation (AMOC)—one of Earth’s major ocean circulation systems—redistributes heat on our planet and has a major impact on climate. Here, we compare a variety of published proxy records to reconstruct the evolution of the AMOC since about
ad
400. A fairly consistent picture of the AMOC emerges: after a long and relatively stable period, there was an initial weakening starting in the nineteenth century, followed by a second, more rapid, decline in the mid-twentieth century, leading to the weakest state of the AMOC occurring in recent decades.
The Atlantic Meridional Overturning Circulation (AMOC) is currently distinctly weaker than it has been for the last millennium, according to a synthesis of proxy records derived from a range of techniques.
Journal Article
Regime shift in Arctic Ocean sea ice thickness
by
Sumata, Hiroshi
,
Gerland, Sebastian
,
de Steur, Laura
in
704/106/125
,
704/106/694/674
,
704/829/2737
2023
Manifestations of climate change are often shown as gradual changes in physical or biogeochemical properties1. Components of the climate system, however, can show stepwise shifts from one regime to another, as a nonlinear response of the system to a changing forcing2. Here we show that the Arctic sea ice regime shifted in 2007 from thicker and deformed to thinner and more uniform ice cover. Continuous sea ice monitoring in the Fram Strait over the last three decades revealed the shift. After the shift, the fraction of thick and deformed ice dropped by half and has not recovered to date. The timing of the shift was preceded by a two-step reduction in residence time of sea ice in the Arctic Basin, initiated first in 2005 and followed by 2007. We demonstrate that a simple model describing the stochastic process of dynamic sea ice thickening explains the observed ice thickness changes as a result of the reduced residence time. Our study highlights the long-lasting impact of climate change on the Arctic sea ice through reduced residence time and its connection to the coupled ocean–sea ice processes in the adjacent marginal seas and shelves of the Arctic Ocean.
Journal Article
Ocean submesoscales as a key component of the global heat budget
by
Menemenlis, Dimitris
,
Klein, Patrice
,
Wang, Jinbo
in
639/766/189
,
704/106/694/1108
,
704/829/2737
2018
Recent studies highlight that oceanic motions associated with horizontal scales smaller than 50 km, defined here as submesoscales, lead to anomalous vertical heat fluxes from colder to warmer waters. This unique transport property is not captured in climate models that have insufficient resolution to simulate these submesoscale dynamics. Here, we use an ocean model with an unprecedented resolution that, for the first time, globally resolves submesoscale heat transport. Upper-ocean submesoscale turbulence produces a systematically-upward heat transport that is five times larger than mesoscale heat transport, with winter-time averages up to 100 W/m
2
for mid-latitudes. Compared to a lower-resolution model, submesoscale heat transport warms the sea surface up to 0.3 °C and produces an upward annual-mean air–sea heat flux anomaly of 4–10 W/m
2
at mid-latitudes. These results indicate that submesoscale dynamics are critical to the transport of heat between the ocean interior and the atmosphere, and are thus a key component of the Earth’s climate.
Oceanic motions associated with horizontal scales smaller than 50 km remain unresolved in climate models. Here the authors show that motions in this scale range are critical to the global transport of heat between the ocean interior and the atmosphere, and are thus a key component of the Earth’s climate.
Journal Article