Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
211 result(s) for "706/4066/4080"
Sort by:
Global land and water limits to electrolytic hydrogen production using wind and solar resources
Proposals for achieving net-zero emissions by 2050 include scaling-up electrolytic hydrogen production, however, this poses technical, economic, and environmental challenges. One such challenge is for policymakers to ensure a sustainable future for the environment including freshwater and land resources while facilitating low-carbon hydrogen production using renewable wind and solar energy. We establish a country-by-country reference scenario for hydrogen demand in 2050 and compare it with land and water availability. Our analysis highlights countries that will be constrained by domestic natural resources to achieve electrolytic hydrogen self-sufficiency in a net-zero target. Depending on land allocation for the installation of solar panels or wind turbines, less than 50% of hydrogen demand in 2050 could be met through a local production without land or water scarcity. Our findings identify potential importers and exporters of hydrogen or, conversely, exporters or importers of industries that would rely on electrolytic hydrogen. The abundance of land and water resources in Southern and Central-East Africa, West Africa, South America, Canada, and Australia make these countries potential leaders in hydrogen export. This study composes a country-specific analysis of land and water requirements for electrolytic hydrogen production, revealing nations constrained in achieving self-sufficiency in hydrogen supply and nations who can become hydrogen exporters.
A reflection on polymer electrolytes for solid-state lithium metal batteries
Before the debut of lithium-ion batteries (LIBs) in the commodity market, solid-state lithium metal batteries (SSLMBs) were considered promising high-energy electrochemical energy storage systems before being almost abandoned in the late 1980s because of safety concerns. However, after three decades of development, LIB technologies are now approaching their energy content and safety limits imposed by the rocking chair chemistry. These aspects are prompting the revival of research activities in SSLMB technologies at both academic and industrial levels. In this perspective article, we present a personal reflection on solid polymer electrolytes (SPEs), spanning from early development to their implementation in SSLMBs, highlighting key milestones. In particular, we discuss the SPEs’ characteristics taking into account the concept of coupled and decoupled SPEs proposed by C. Austen Angell in the early 1990s. Possible remedies to improve the physicochemical and electrochemical properties of SPEs are also examined. With this article, we also aim to highlight the missing blocks in building ideal SSLMBs and stimulate research towards innovative electrolyte materials for future rechargeable high-energy batteries. Polymer electrolytes are attractive candidates for rechargeable lithium metal batteries. Here, the authors give a personal reflection on the structural design of coupled and decoupled polymer electrolytes and possible routes to further enhance their performance in rechargeable batteries.
Electric vehicle battery chemistry affects supply chain disruption vulnerabilities
We examine the relationship between electric vehicle battery chemistry and supply chain disruption vulnerability for four critical minerals: lithium, cobalt, nickel, and manganese. We compare the nickel manganese cobalt (NMC) and lithium iron phosphate (LFP) cathode chemistries by (1) mapping the supply chains for these four materials, (2) calculating a vulnerability index for each cathode chemistry for various focal countries and (3) using network flow optimization to bound uncertainties. World supply is currently vulnerable to disruptions in China for both chemistries: 80% [71% to 100%] of NMC cathodes and 92% [90% to 93%] of LFP cathodes include minerals that pass through China. NMC has additional risks due to concentrations of nickel, cobalt, and manganese in other countries. The combined vulnerability of multiple supply chain stages is substantially larger than at individual steps alone. Our results suggest that reducing risk requires addressing vulnerabilities across the entire battery supply chain. Electric vehicle battery supply chains are currently vulnerable to supply disruptions in China, but research shows that the cumulative effect of multiple supply chain steps creates additional vulnerabilities across multiple critical battery minerals.
Unveiling hidden energy poverty using the energy equity gap
Income-based energy poverty metrics ignore people’s behavior patterns, particularly reducing energy consumption to limit financial stress. We investigate energy-limiting behavior in low-income households using a residential electricity consumption dataset. We first determine the outdoor temperature at which households start using cooling systems, the inflection temperature. Our relative energy poverty metric, the energy equity gap , is defined as the difference in the inflection temperatures between low and high-income groups. In our study region, we estimate the energy equity gap to be between 4.7–7.5 °F (2.6–4.2 °C). Within a sample of 4577 households, we found 86 energy-poor and 214 energy-insecure households. In contrast, the income-based energy poverty metric, energy burden (10% threshold), identified 141 households as energy-insecure. Only three households overlap between our energy equity gap and the income-based measure. Thus, the energy equity gap reveals a hidden but complementary aspect of energy poverty and insecurity. In the summer, low-income households in the Arizona, US wait 4 - 7 °F (2.6–4.2 °C) longer than high-income households to turn on their AC units to save money on energy bills. This energy limiting behavior indicates a hidden form of energy poverty.
A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production
Hydrogen will become a key player in transitioning toward a net-zero energy system. However, a clear pathway toward a unified European hydrogen infrastructure to support the rapid scale-up of hydrogen production is still under discussion. This study explores plausible pathways using a fully sector-coupled energy system model. Here, we assess the emergence of hydrogen infrastructure build-outs connecting neighboring European nations through hydrogen import and domestic production centers with Western and Central European demands via four distinct hydrogen corridors. We identify a potential lock-in effect of blue hydrogen in the medium term, highlighting the risk of long-term dependence on methane. In contrast, we show that a self-sufficient Europe relying on domestic green hydrogen by 2050 would increase yearly expenses by around 3% and require 518 gigawatts of electrolysis capacity. This study emphasizes the importance of rapidly scaling up electrolysis capacity, building hydrogen networks and storage facilities, deploying renewable electricity generation, and ensuring coherent coordination across European nations. A European hydrogen infrastructure supports a rapid scale-up of key production centers at Europe’s periphery. However, uncertainties in hydrogen demand, production pathways, and potential imports challenge the network design and storage development.
Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch
Hydrogen will play a key role in decarbonizing economies. Here, we quantify the costs and environmental impacts of possible large-scale hydrogen economies, using four prospective hydrogen demand scenarios for 2050 ranging from 111–614 megatonne H 2 year −1 . Our findings confirm that renewable (solar photovoltaic and wind) electrolytic hydrogen production generates at least 50–90% fewer greenhouse gas emissions than fossil-fuel-based counterparts without carbon capture and storage. However, electrolytic hydrogen production could still result in considerable environmental burdens, which requires reassessing the concept of green hydrogen. Our global analysis highlights a few salient points: (i) a mismatch between economical hydrogen production and hydrogen demand across continents seems likely; (ii) region-specific limitations are inevitable since possibly more than 60% of large hydrogen production potentials are concentrated in water-scarce regions; and (iii) upscaling electrolytic hydrogen production could be limited by renewable power generation and natural resource potentials. Future hydrogen economies need massive amounts of low-carbon hydrogen. Here, we show that mismatches between economic production and supply locations, water scarcity, and the need for renewable power and materials might limit large-scale hydrogen production.
Early decarbonisation of the European energy system pays off
For a given carbon budget over several decades, different transformation rates for the energy system yield starkly different results. Here we consider a budget of 33 GtCO 2 for the cumulative carbon dioxide emissions from the European electricity, heating, and transport sectors between 2020 and 2050, which represents Europe’s contribution to the Paris Agreement. We have found that following an early and steady path in which emissions are strongly reduced in the first decade is more cost-effective than following a late and rapid path in which low initial reduction targets quickly deplete the carbon budget and require a sharp reduction later. We show that solar photovoltaic, onshore and offshore wind can become the cornerstone of a fully decarbonised energy system and that installation rates similar to historical maxima are required to achieve timely decarbonisation. Key to those results is a proper representation of existing balancing strategies through an open, hourly-resolved, networked model of the sector-coupled European energy system. For a given carbon budget between 2020 and 2050, different transformation rates for the European energy system yield starkly different results. Here the authors show that strongly reducing emissions in the first decade is cost-effective and entails additional benefits.
Adsorption of rare earth elements in regolith-hosted clay deposits
Global resources of heavy Rare Earth Elements (REE) are dominantly sourced from Chinese regolith-hosted ion-adsorption deposits in which the REE are inferred to be weakly adsorbed onto clay minerals. Similar deposits elsewhere might provide alternative supply for these high-tech metals, but the adsorption mechanisms remain unclear and the adsorbed state of REE to clays has never been demonstrated in situ. This study compares the mineralogy and speciation of REE in economic weathering profiles from China to prospective regoliths developed on peralkaline rocks from Madagascar. We use synchrotron X-ray absorption spectroscopy to study the distribution and local bonding environment of Y and Nd, as proxies for heavy and light REE, in the deposits. Our results show that REE are truly adsorbed as easily leachable 8- to 9-coordinated outer-sphere hydrated complexes, dominantly onto kaolinite. Hence, at the atomic level, the Malagasy clays are genuine mineralogical analogues to those currently exploited in China. Global resources of heavy Rare Earth Elements (REE) are dominantly sourced from Chinese regolith-hosted ion-adsorption deposits, yet the adsorption mechanisms remain unclear. Here, the authors find that heavy REE are adsorbed as easily leachable 8-coordinated outer-sphere hydrated complexes, dominantly onto kaolinite, in clays from both China and Madagascar.
High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation
Rooftop solar photovoltaics currently account for 40% of the global solar photovoltaics installed capacity and one-fourth of the total renewable capacity additions in 2018. Yet, only limited information is available on its global potential and associated costs at a high spatiotemporal resolution. Here, we present a high-resolution global assessment of rooftop solar photovoltaics potential using big data, machine learning and geospatial analysis. We analyse 130 million km 2 of global land surface area to demarcate 0.2 million km 2 of rooftop area, which together represent 27 PWh yr −1 of electricity generation potential for costs between 40–280 $ MWh −1 . Out of this, 10 PWh yr −1 can be realised below 100 $ MWh −1 . The global potential is predominantly spread between Asia (47%), North America (20%) and Europe (13%). The cost of attaining the potential is lowest in India (66 $ MWh −1 ) and China (68 $ MWh −1 ), with USA (238 $ MWh −1 ) and UK (251 $ MWh −1 ) representing some of the costliest countries. Though a global assessment of rooftop solar photovoltaic (RTSPV) technology’s potential and the cost is needed to estimate its impact, existing methods demand extensive data processing. Here, the authors report a machine learning method to realize a high-resolution global assessment of RTSPV potential.
Radical transformation pathway towards sustainable electricity via evolutionary steps
A transition towards long-term sustainability in global energy systems based on renewable energy resources can mitigate several growing threats to human society simultaneously: greenhouse gas emissions, human-induced climate deviations, and the exceeding of critical planetary boundaries. However, the optimal structure of future systems and potential transition pathways are still open questions. This research describes a global, 100% renewable electricity system, which can be achieved by 2050, and the steps required to enable a realistic transition that prevents societal disruption. Modelling results show that a carbon neutral electricity system can be built in all regions of the world in an economically feasible manner. This radical transformation will require steady but evolutionary changes for the next 35 years, and will lead to sustainable and affordable power supply globally. The technical and economic viability of renewable energy (RE) based energy system is understudied. Here the authors utilized a LUT Energy System Transition Model to indicate that a carbon neutral electricity system can be built in all global regions in an economically feasible way but requires evolutionary changes for the following 35 years.