Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
695 result(s) for "AAV vector"
Sort by:
Gene Therapy: Will the Promise of Optimizing Lung Allografts Become Reality?
Lung transplantation is the definitive therapy for patients living with end-stage lung disease. Despite significant progress made in the field, graft survival remains the lowest of all solid organ transplants. Additionally, the lung has among the lowest of organ utilization rates—among eligible donors, only 22% of lungs from multi-organ donors were transplanted in 2019. Novel strategies are needed to rehabilitate marginal organs and improve graft survival. Gene therapy is one promising strategy in optimizing donor allografts. Over-expression or inhibition of specific genes can be achieved to target various pathways of graft injury, including ischemic-reperfusion injuries, humoral or cellular rejection, and chronic lung allograft dysfunction. Experiments in animal models have historically utilized adenovirus-based vectors and the majority of literature in lung transplantation has focused on overexpression of IL-10. Although several strategies were shown to prevent rejection and prolong graft survival in preclinical models, none have led to clinical translation. The past decade has seen a renaissance in the field of gene therapy and two AAV-based in vivo gene therapies are now FDA-approved for clinical use. Concurrently, normothermic ex vivo machine perfusion technology has emerged as an alternative to traditional static cold storage. This preservation method keeps organs physiologically active during storage and thus potentially offers a platform for gene therapy. This review will explore the advantages and disadvantages of various gene therapy modalities, review various candidate genes implicated in various stages of allograft injury and summarize the recent efforts in optimizing donor lungs using gene therapy.
Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models
Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and determined the safety profile of this AAV vector in mice and sheep as a large animal model. In both studies, plasma biochemical parameters and hematology were comparable to untreated controls. Except for mild myositis at the site of injection, none of the major organs revealed any signs of toxicity. AAV-mediated human IgG expression increased steadily throughout the 28-day study in sheep, resulting in peak concentrations of 21.4–46.7 µg/ mL, demonstrating practical scale up from rodent to large animal models. This alternative approach to immunity is worth further exploration after this demonstration of safety, tolerability, and scalability in a large animal model.
Thermal Stability as a Determinant of AAV Serotype Identity
Currently, there are over 150 ongoing clinical trials utilizing adeno-associated viruses (AAVs) to target various genetic diseases, including hemophilia (AAV2 and AAV8), congenital heart failure (AAV1 and AAV6), cystic fibrosis (AAV2), rheumatoid arthritis (AAV2), and Batten disease (AAVrh.10). Prior to patient administration, AAV vectors must have their serotype, concentration, purity, and stability confirmed. Here, we report the application of differential scanning fluorimetry (DSF) as a good manufacturing practice (GMP) capable of determining the melting temperature (T ) for AAV serotype identification. This is a simple, rapid, cost effective, and robust method utilizing small amounts of purified AAV capsids (∼25 μL of ∼10 particles). AAV1-9 and AAVrh.10 exhibit specific T s in buffer formulations commonly used in clinical trials. Notably, AAV2 and AAV3, which are the least stable, have varied T s, whereas AAV5, the most stable, has a narrow T range in the different buffers, respectively. Vector stability was dictated by VP3 only, specifically, the ratio of basic/acidic amino acids, and was independent of VP1 and VP2 content or the genome packaged. Furthermore, stability of recombinant AAVs differing by a single basic or acidic amino acid residue are distinguishable. Hence, AAV DSF profiles can serve as a robust method for serotype identification of clinical vectors.
Human Immune Responses to Adeno-Associated Virus (AAV) Vectors
Recombinant adeno-associated virus (rAAV) vectors are one of the most promising gene delivery tools. Several features make rAAV vectors an ideal platform for gene transfer. However, the high homology with the parental wild-type virus, which often infects humans, poses limitations in terms of immune responses associated with this vector platform. Both humoral and cell-mediated immunity to wild-type AAV have been documented in healthy donors, and, at least in the case of anti-AAV antibodies, have been shown to have a potentially high impact on the outcome of gene transfer. While several factors can contribute to the overall immunogenicity of rAAV vectors, vector design and the total vector dose appear to be responsible of immune-mediated toxicities. While preclinical models have been less than ideal in predicting the outcome of gene transfer in humans, the current preclinical body of evidence clearly demonstrates that rAAV vectors can trigger both innate and adaptive immune responses. Data gathered from clinical trials offers key learnings on the immunogenicity of AAV vectors, highlighting challenges as well as the potential strategies that could help unlock the full therapeutic potential of gene transfer.
Pharmaceutical Development of AAV-Based Gene Therapy Products for the Eye
A resurgence of interest and investment in the field of gene therapy, driven in large part by advances in viral vector technology, has recently culminated in United States Food and Drug Administration approval of the first gene therapy product targeting a disease caused by mutations in a single gene. This product, LUXTURNA™ (voretigene neparvovec-rzyl; Spark Therapeutics, Inc., Philadelphia, PA), delivers a normal copy of the RPE65 gene to retinal cells for the treatment of biallelic RPE65 mutation–associated retinal dystrophy, a blinding disease. Many additional gene therapy programs targeting both inherited retinal diseases and other ocular diseases are in development, owing to an improved understanding of the genetic basis of ocular disease and the unique properties of the ocular compartment that make it amenable to local gene therapy. Here we review the growing body of literature that describes both the design and development of ocular gene therapy products, with a particular emphasis on target and vector selection, and chemistry, manufacturing, and controls.
Selection of an Efficient AAV Vector for Robust CNS Transgene Expression
Adeno-associated virus (AAV) capsid libraries have generated improved transgene delivery vectors. We designed an AAV library construct, iTransduce, that combines a peptide library on the AAV9 capsid with a Cre cassette to enable sensitive detection of transgene expression. After only two selection rounds of the library delivered intravenously in transgenic mice carrying a Cre-inducible fluorescent protein, we flow sorted fluorescent cells from brain, and DNA sequencing revealed two dominant capsids. One of the capsids, termed AAV-F, mediated transgene expression in the brain cortex more than 65-fold (astrocytes) and 171-fold (neurons) higher than the parental AAV9. High transduction efficiency was sex-independent and sustained in two mouse strains (C57BL/6 and BALB/c), making it a highly useful capsid for CNS transduction of mice. Future work in large animal models will test the translation potential of AAV-F. [Display omitted]
Influence of Pre-existing Anti-capsid Neutralizing and Binding Antibodies on AAV Vector Transduction
Pre-existing immunity to adeno-associated virus (AAV) is highly prevalent in humans and can profoundly impact transduction efficiency. Despite the relevance to AAV-mediated gene transfer, relatively little is known about the fate of AAV vectors in the presence of neutralizing antibodies (NAbs). Similarly, the effect of binding antibodies (BAbs), with no detectable neutralizing activity, on AAV transduction is ill defined. Here, we delivered AAV8 vectors to mice carrying NAbs and demonstrated that AAV particles are taken up by both liver parenchymal and non-parenchymal cells; viral particles are then rapidly cleared, without resulting in transgene expression. , imaging of hepatocytes exposed to AAV vectors pre-incubated with either NAbs or BAbs revealed that virus is taken up by cells in both cases. Whereas no successful transduction was observed when AAV was pre-incubated with NAbs, an increased capsid internalization and transgene expression was observed in the presence of BAbs. Accordingly, AAV8 vectors administered to mice passively immunized with anti-AAV8 BAbs showed a more efficient liver transduction and a unique vector biodistribution profile compared to mice immunized with NAbs. These results highlight a virtually opposite effect of neutralizing and binding antibodies on AAV vectors transduction.
Extending AAV Packaging Cargo through Dual Co-Transduction: Efficient Protein Trans-Splicing at Low Vector Doses
Adeno-associated viral (AAV) vectors represent one of the leading platforms for gene delivery. Nevertheless, their small packaging capacity restricts their use for diseases requiring large-gene delivery. To overcome this, dual-AAV vector systems that rely on protein trans-splicing were developed, with the split-intein Npu DnaE among the most-used. However, the reconstitution efficiency of Npu DnaE is still insufficient, requiring higher vector doses. In this work, two split-inteins, Cfa and Gp41-1, with reportedly superior trans-splicing were evaluated in comparison with Npu DnaE by transient transfections and dual-AAV in vitro co-transductions. Both Cfa and Gp41-1 split-inteins enabled reconstitution rates that were over two-fold higher than Npu DnaE and 100% of protein reconstitution. The impact of different vector preparation qualities in split-intein performances was also evaluated in co-transduction assays. Higher-quality preparations increased split-inteins’ performances by three-fold when compared to low-quality preparations (60–75% vs. 20–30% full particles, respectively). Low-quality vector preparations were observed to limit split-gene reconstitutions by inhibiting co-transduction. We show that combining superior split-inteins with higher-quality vector preparations allowed vector doses to be decreased while maintaining high trans-splicing rates. These results show the potential of more-efficient protein-trans-splicing strategies in dual-AAV vector co-transduction, allowing the extension of its use to the delivery of larger therapeutic genes.
Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery
Recent progress in gene transfer technology enables the delivery of genes precisely to the application-relevant cell type ex vivo on cultivated primary cells or in vivo on local or systemic administration. Gene vectors based on lentiviruses or adeno-associated viruses can be engineered such that they use a cell surface marker of choice for cell entry instead of their natural receptors. Binding to the surface marker is mediated by a targeting ligand displayed on the vector particle surface, which can be a peptide, single-chain antibody, or designed ankyrin repeat protein. Examples include vectors that deliver genes to specialized endothelial cells or lymphocytes, tumor cells, or particular cells of the nervous system with potential applications in gene function studies and molecular medicine. Numerous receptor-targeted viral gene vectors have been described during the past years using distinct cell surface proteins for cell entry that are selectively expressed on defined cell types instead of their natural broadly expressed receptors. Receptor-targeting strategies based on directed evolution or rational engineering have been established. The latter is equally applicable to non-enveloped and enveloped vectors involving the destruction of natural receptor usage followed by the addition of a high-affinity ligand mediating attachment to the desired surface protein. Receptor-targeted vector particles can be as selective for their targeted cell type as antibodies for their antigen when applied systemically or locally in preclinical studies. Receptor targeting opens up novel concepts in gene therapy and the cell type-specific delivery of genetic material in life sciences.
Immunologic investigations into transgene directed immune-mediated myositis following delandistrogene moxeparvovec gene therapy
Delandistrogene moxeparvovec is an rAAVrh74 vector-based gene transfer therapy that delivers a transgene encoding delandistrogene moxeparvovec micro-dystrophin, an engineered, functional form of dystrophin shown to stabilize or slow disease progression in DMD. It is approved in the US and in other select countries. Two serious adverse event cases of immune-mediated myositis (IMM) were reported in the phase Ib ENDEAVOR trial (NCT04626674). We hypothesized that immune responses to the micro-dystrophin transgene product may have mediated these IMM events. An interferon-gamma ELISpot assay was used to detect T cell responses to delandistrogene moxeparvovec micro-dystrophin peptide pools. ELISpot analysis suggested that IMM resulted from T cell-mediated responses directed against specific micro-dystrophin peptides corresponding to exons 8 and 9 (Case 1) and exon 8 (Case 2) of the DMD gene. In silico epitope mapping based on the patients’ HLA-I alleles indicated greater probability for peptides derived from exons 8 and/or 9 to bind HLA-I, providing further evidence that peptides derived from corresponding micro-dystrophin regions may have higher immunogenic potential. Collectively, these data suggest that patients with DMD gene deletions involving exons 8 and/or 9 may be at increased risk of IMM following delandistrogene moxeparvovec micro-dystrophin gene therapy infusion.