Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20,538
result(s) for
"ACIDITY"
Sort by:
Key soil properties governing Cr
2025
Hexavalent Chromium (Cr(VI)) contamination in soils poses significant ecological risks due to its mobility and toxicity, with retention mechanisms governed by interactions between soil properties and Cr(VI). However, the quantitative roles of key soil parameters in Cr(VI) retention remain poorly resolved, particularly across diverse soil types. This study investigated Cr(VI) retention behaviors in 16 Chinese soils (15 types) through batch experiments, isothermal adsorption model, correlation analysis and path analysis. The results showed that the retention of Cr(VI) in acidic soils was significantly higher than in alkaline soils. Acidic soils (pH 7.3) with highest content of CaCO.sub.3 show negligible Cr(VI) reactions.Cr(VI) retention was high at soil pH values below approximately 5.5, but declined sharply at higher pH values. The Langmuir model was only suitable for describing acidic soils (pH < 5.4), while the Freundlich equation was applicable to all soils. Correlation analysis revealed that soil pH, the content of soil organic matters(SOM), Exch-Fe(II), complexed iron (Com-Fe), and clay were significantly related to the Cr(VI) retention (p < 0.01), whereas the CaCO.sub.3 content was negatively related to the Cr(VI) retention (p < 0.05).Path analysis revealed that soil pH was the most important direct factor, followed by Exch-Fe(II), Com-Fe, clay, in determining Cr(VI) retention in natural soil. CEC and CaCO.sub.3 content had only limited directly effects on the Cr(VI) retention. Additionally, The content of SOM, Amorphous iron oxides(Amo-Fe), and Easily reducible manganese(Er-Mn) content had little directly effect on Cr(VI) retention. To validate these findings, Cr(VI) retention was measured in all soils after adjusting their pH to 4.3, 6, and 8. The results highlighted soil pH and Exch-Fe(II) content were the most decisive factors for evaluating Cr(VI) retention in natrual soils,whereas SOM content was an unreliable parameter for assessing this process.
Journal Article
Soil pH - nutrient relationships: the diagram
2023
The pH of the soil in relation to the availability of plant nutrients has been an important research topic in soil fertility and plant nutrition. In the 1930 and 1940 s, a diagram was proposed that showed how the availability of major and minor nutrients was affected by the pH. This conceptual diagram, developed by Emil Truog based on earlier work, included 11 nutrients. The width of the band at any pH value indicated the relative availability of the plant nutrient. The band did not present the actual amount, as that was affected by other factors such as the type of crop, soil and fertilization. For the 11 nutrients on the diagram, a pH of around 6.5 was considered most favorable. The diagram has been often published in text books and soil extension material and continues to be reproduced. This paper reviews how the diagram was developed, and what its limitations are. In recent decades, research in soil fertility and plant nutrition has focused on the biological transformations of plant nutrients in the soil and it has been recognized that the soil pH influences solubility, concentration in soil solution, ionic form, and adsorption and mobility of most plant nutrients. Nutrients interact and different plants respond differently to a change in pH. The soil pH cannot be used to predict or estimate plant nutrient availability, and the diagram should not be used as it suffers from numerous exceptions and barely represents any rules.
Journal Article
Water balance creates a threshold in soil pH at the global scale
2016
There is an abrupt transition from alkaline to acid soil pH when mean annual precipitation exceeds mean annual potential evapotranspiration, demonstrating that climate creates a nonlinear pattern in soil solution chemistry at the global scale.
Climate creates a global threshold in soil chemistry
Soil pH affects nutrient supply and storage in soils and, in consequence, can influence plant productivity. Transitions from alkaline to acid soils are caused by variations in the water balance across natural climate gradients, but a global-scale investigation of the influence of climate on soil pH is lacking. Here Eric Slessarev
et al
. evaluate the global relationship between water balance and soil pH, and find that there is an abrupt transition from alkaline to acid soil pH that occurs where mean annual precipitation begins to exceed mean annual potential evapotranspiration. The authors suggest that deviations from the observed global pattern may result from seasonality, climate history, erosion and mineralogy.
Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems
1
. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients
2
,
3
. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (
n
= 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.
Journal Article
Aerosol pH and its driving factors in Beijing
2019
Aerosol acidity plays a key role in secondary aerosol formation. The high-temporal-resolution PM2.5 pH and size-resolved aerosol pH in Beijing were calculated with ISORROPIA II. In 2016–2017, the mean PM2.5 pH (at relative humidity (RH) > 30 %) over four seasons was 4.5±0.7 (winter) > 4.4±1.2 (spring) > 4.3±0.8 (autumn) > 3.8±1.2 (summer), showing moderate acidity. In coarse-mode aerosols, Ca2+ played an important role in aerosol pH. Under heavily polluted conditions, more secondary ions accumulated in the coarse mode, leading to the acidity of the coarse-mode aerosols shifting from neutral to weakly acidic. Sensitivity tests also demonstrated the significant contribution of crustal ions to PM2.5 pH. In the North China Plain (NCP), the common driving factors affecting PM2.5 pH variation in all four seasons were SO42-, TNH3 (total ammonium (gas + aerosol)), and temperature, while unique factors were Ca2+ in spring and RH in summer. The decreasing SO42- and increasing NO3- mass fractions in PM2.5 as well as excessive NH3 in the atmosphere in the NCP in recent years are the reasons why aerosol acidity in China is lower than that in Europe and the United States. The nonlinear relationship between PM2.5 pH and TNH3 indicated that although NH3 in the NCP was abundant, the PM2.5 pH was still acidic because of the thermodynamic equilibrium between NH4+ and NH3. To reduce nitrate by controlling ammonia, the amount of ammonia must be greatly reduced below excessive quantities.
Journal Article
Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol
2010
The application of biochar (biomass-derived black carbon) to soil has been shown to improve crop yields, but the reasons for this are often not clearly demonstrated. Here, we studied the effect of a single application of 0, 8 and 20 t ha⁻¹ of biochar to a Colombian savanna Oxisol for 4 years (2003-2006), under a maize-soybean rotation. Soil sampling to 30 cm was carried out after maize harvest in all years but 2005, maize tissue samples were collected and crop biomass was measured at harvest. Maize grain yield did not significantly increase in the first year, but increases in the 20 t ha⁻¹ plots over the control were 28, 30 and 140% for 2004, 2005 and 2006, respectively. The availability of nutrients such as Ca and Mg was greater with biochar, and crop tissue analyses showed that Ca and Mg were limiting in this system. Soil pH increased, and exchangeable acidity showed a decreasing trend with biochar application. We attribute the greater crop yield and nutrient uptake primarily to the 77-320% greater available Ca and Mg in soil where biochar was applied.
Journal Article
Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems
2020
Cloud water acidity affects the atmospheric chemistry of sulfate and organic aerosol formation, halogen radical cycling, and trace metal speciation. Precipitation acidity including post-depositional inputs adversely affects soil and freshwater ecosystems. Here, we use the GEOS-Chem model of atmospheric chemistry to simulate the global distributions of cloud water and precipitation acidity as well as the total acid inputs to ecosystems from wet deposition. The model accounts for strong acids (H2SO4, HNO3, and HCl), weak acids (HCOOH, CH3COOH, CO2, and SO2), and weak bases (NH3 as well as dust and sea salt aerosol alkalinity). We compile a global data set of cloud water pH measurements for comparison with the model. The global mean observed cloud water pH is 5.2±0.9, compared to 5.0±0.8 in the model, with a range from 3 to 8 depending on the region. The lowest values are over East Asia, and the highest values are over deserts. Cloud water pH over East Asia is low because of large acid inputs (H2SO4 and HNO3), despite NH3 and dust neutralizing 70 % of these inputs. Cloud water pH is typically 4–5 over the US and Europe. Carboxylic acids account for less than 25 % of cloud water H+ in the Northern Hemisphere on an annual basis but 25 %–50 % in the Southern Hemisphere and over 50 % in the southern tropical continents, where they push the cloud water pH below 4.5. Anthropogenic emissions of SO2 and NOx (precursors of H2SO4 and HNO3) are decreasing at northern midlatitudes, but the effect on cloud water pH is strongly buffered by NH4+ and carboxylic acids. The global mean precipitation pH is 5.5 in GEOS-Chem, which is higher than the cloud water pH because of dilution and below-cloud scavenging of NH3 and dust. GEOS-Chem successfully reproduces the annual mean precipitation pH observations in North America, Europe, and eastern Asia. Carboxylic acids, which are undetected in routine observations due to biodegradation, lower the annual mean precipitation pH in these areas by 0.2 units. The acid wet deposition flux to terrestrial ecosystems taking into account the acidifying potential of NO3- and NH4+ in N-saturated ecosystems exceeds 50 meqm-2a-1 in East Asia and the Americas, which would affect sensitive ecosystems. NH4+ is the dominant acidifying species in wet deposition, contributing 41 % of the global acid flux to continents under N-saturated conditions.
Journal Article
Amiloride but Not Memantine Reduces Neurodegeneration, Seizures and Myoclonic Jerks in Rats with Cardiac Arrest-Induced Global Cerebral Hypoxia and Reperfusion. e60309
2013
It has been reported that both activation of N-methyl-D-aspartate receptors and acid-sensing ion channels during cerebral ischemic insult contributed to brain injury. But which of these two molecular targets plays a more pivotal role in hypoxia-induced brain injury during ischemia is not known. In this study, the neuroprotective effects of an acid-sensing cation channel blocker and an N-methyl-D-aspartate receptor blocker were evaluated in a rat model of cardiac arrest-induced cerebral hypoxia. We found that intracisternal injection of amiloride, an acid-sensing ion channel blocker, dose-dependently reduced cerebral hypoxia-induced neurodegeneration, seizures, and audiogenic myoclonic jerks. In contrast, intracisternal injection of memantine, a selective uncompetitive N-methyl-D-aspartate receptor blocker, had no significant effect on cerebral hypoxia-induced neurodegeneration, seizure and audiogenic myoclonic jerks. Intracisternal injection of zoniporide, a specific sodium-hydrogen exchanger inhibitor, before cardiac arrest-induced cerebral hypoxia, also did not reduce cerebral hypoxia-induced neurodegeneration, seizures and myoclonic jerks. These results suggest that acid-sensing ion channels play a more pivotal role than N-methyl-D-aspartate receptors in mediating cerebral hypoxia-induced brain injury during ischemic insult.
Journal Article
A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles
2015
Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol–gas equilibrium partitioning acquired in Mexico City during the Megacity Initiative: Local and Global Research Objectives (MILAGRO) study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+ and that a higher H+ loading and lower cation / anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and NH3–NH4+ partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the E-AIM (Extended Aerosol Inorganics Model) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3–NH4+ partitioning. The modeled pH values from both E-AIM and ISORROPIA-II run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and previously published studies with conclusions based on such acidity proxies may need to be reevaluated. Given the significance of acidity for chemical processes in the atmosphere, the implications of this study are important and far reaching.
Journal Article
Effectiveness of ammonia reduction on control of fine particle nitrate
2018
In some regions, reducing aerosol ammonium nitrate (NH4NO3) concentrations may substantially improve air quality. This can be accomplished by reductions in precursor emissions, such as nitrogen oxides (NOx) to lower nitric acid (HNO3) that partitions to the aerosol, or reductions in ammonia (NH3) to lower particle pH and keep HNO3 in the gas phase. Using the ISORROPIA-II thermodynamic aerosol model and detailed observational data sets, we explore the sensitivity of aerosol NH4NO3 to gas-phase NH3 and NOx controls for a number of contrasting locations, including Europe, the United States, and China. NOx control is always effective, whereas the aerosol response to NH3 control is highly nonlinear and only becomes effective at a thermodynamic sweet spot. The analysis provides a conceptual framework and fundamental evaluation on the relative value of NOx versus NH3 control and demonstrates the relevance of pH as an air quality parameter. We find that, regardless of the locations examined, it is only when ambient particle pH drops below an approximate critical value of 3 (slightly higher in warm and slightly lower in cold seasons) that NH3 reduction leads to an effective response in PM2.5 mass. The required amount of NH3 reduction to reach the critical pH and efficiently decrease NH4NO3 at different sites is assessed. Owing to the linkage between NH3 emissions and agricultural productivity, the substantial NH3 reduction required in some locations may not be feasible. Finally, controlling NH3 emissions to increase aerosol acidity and evaporate NH4NO3 will have other effects, beyond reduction of PM2.5 NH4NO3, such as increasing aerosol toxicity and potentially altering the deposition patterns of nitrogen and trace nutrients.
Journal Article
Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls
2016
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013–2025 decreases in anthropogenic emissions of 34 % for NOx (leading to a 7 % increase in isoprene SOA) and 48 % for SO2 (35 % decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.
Journal Article