Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"ACTUAL YIELDS"
Sort by:
Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta
2015
Improving crop yields are essential to meet the increasing pressure of global food demands. The loss of high quality land, the slowing in annual yield increases of major cereals, increasing fertilizer use, and the effect of this on the environment all indicate that we need to develop new strategies to increase grain yields with less impact on the environment. One strategy that could help address this concern is by narrowing the yield gaps of major crops using improved genetics and management. The objective of this study was to determine wheat (Triticum spp. L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) yields and production gaps in Alberta. We used 10 years of data (2005-2014) to understand yield variability and input efficiency at a farmers' specified level of management, and the yield potential under optimal management to suggest appropriate pathways for closing yield gaps. Significant management gaps were observed between attainable and actual yields of rainfed wheat (24%), barley (25%), and canola (30%). In addition, genetic gaps (i.e., gaps due to genetic selection) in wheat, barley, and canola were 18, 12, and 5%, respectively. Genetic selection with optimal crop management could increase yields of wheat, barley, and canola significantly, with estimated yield gains of 3.42, 1.92, and 1.65 million tons, respectively, each year under rainfed conditions in Alberta. This paper identifies yield gaps and offers suggestions to improve efficiency in crop production.
Journal Article
Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review
by
Laamrani, Ahmed
,
Khechba, Keltoum
,
Misbah, Khalil
in
actual yield
,
Africa
,
Agricultural production
2021
Africa has the largest population growth rate in the world and an agricultural system characterized by the predominance of smallholder farmers. Improving food security in Africa will require a good understanding of farming systems yields as well as reducing yield gaps (i.e., the difference between potential yield and actual farmer yield). To this end, crop yield gap practices in African countries need to be understood to fill this gap while decreasing the environmental impacts of agricultural systems. For instance, the variability of yields has been demonstrated to be strongly controlled by soil fertilizer use, irrigation management, soil attribute, and the climate. Consequently, the quantitative assessment and mapping information of soil attributes such as nitrogen (N), phosphorus (P), potassium (K), soil organic carbon (SOC), moisture content (MC), and soil texture (i.e., clay, sand and silt contents) on the ground are essential to potentially reducing the yield gap. However, to assess, measure, and monitor these soil yield-related parameters in the field, there is a need for rapid, accurate, and inexpensive methods. Recent advances in remote sensing technologies and high computational performances offer a unique opportunity to implement cost-effective spatiotemporal methods for estimating crop yield with important levels of scalability. However, researchers and scientists in Africa are not taking advantage of the opportunity of increasingly available geospatial remote sensing technologies and data for yield studies. The objectives of this report are to (i) conduct a review of scientific literature on the current status of African yield gap analysis research and their variation in regard to soil properties management by using remote sensing techniques; (ii) review and describe optimal yield practices in Africa; and (iii) identify gaps and limitations to higher yields in African smallholder farms and propose possible improvements. Our literature reviewed 80 publications and covered a period of 22 years (1998-2020) over many selected African countries with a potential yield improvement. Our results found that (i) the number of agriculture yield-focused remote sensing studies has gradually increased, with the largest proportion of studies published during the last 15 years; (ii) most studies were conducted exclusively using multispectral Landsat and Sentinel sensors; and (iii) over the past decade, hyperspectral imagery has contributed to a better understanding of yield gap analysis compared to multispectral imagery; (iv) soil nutrients (i.e., NPK) are not the main factor influencing the studied crop productivity in Africa, whereas clay, SOC, and soil pH were the most examined soil properties in prior papers.
Journal Article
On-farm assessment of eucalypt yield gaps — a case study for the producing areas of the state of Minas Gerais, Brazil
by
de Freitas Cleverson Henrique
,
Sentelhas, Paulo Cesar
,
Elli, Elvis Felipe
in
Biometeorology
,
Case studies
,
Climate
2021
AbstractThe concept of yield gaps provides a basis for identifying the main sources of production losses, caused by water or management deficiencies, which may help foresters and forest companies to better plan and make decisions in their areas. Thus, the aim of this study was to identify the magnitude and the major causes of yield gaps of eucalypts, being this the most planted forest genus in Brazil, in different producing regions of the state of Minas Gerais that has the largest planted area. To these ends, potential (Yp) and attainable (Ya) yields were simulated using the agroecological zone model (AEZ-FAO) adapted and calibrated for Brazilian eucalypt clones. Actual yield (Yr) data were obtained from 22 sites located in the state of Minas Gerais from 2009 to 2016, considering an average forest rotation of 6.7 years and plantings occurring between 2002 and 2010. From this, the total yield gap (YGtot), yield gap by water deficit (YGwd), and yield gap by sub-optimal management (YGman) were determined. The YGwd ranged from 37 to 69 m3 ha−1 year−1 across the 22 sites assessed, with an average value of 55 m3 ha−1 year−1. On the other hand, the YGman ranged from zero (optimal management) to 31 m3 ha−1 year−1. The eucalypt yield gap in commercial areas of Minas Gerais state was mainly caused by water deficit, which represented 77% of the total yield gap. On the other hand, the deficiencies in forest management accounted for 23% of the total yield gap.
Journal Article
Assessing Soybean Yield Potential and Yield Gap in Different Agroecological Regions of India Using the DSSAT Model
by
Nargund, Raghavendra
,
Mohanty, Monoranjan
,
Drewry, Darren
in
actual yield
,
Agricultural production
,
agroecology
2024
The study used the DSSAT model to assess potential soybean yields in different regions of India and validated it under diverse agroecological conditions. The average simulated yield under irrigated conditions was 3794 kg ha−1 relative to the simulated average rainfed yield of 2446 kg ha−1, showing a 35.52% reduction in grain yield due to adverse moisture conditions under rainfed conditions. Relative to simulated yield, the average observed (actual) rainfed yield across 43 districts of India was 1025 kg ha−1, which was 2769 and 1421 kg ha−1 lower than irrigated and rainfed potential yield, respectively. A significant positive correlation was observed between simulated water non-limited yield and solar radiation (R2 = 0.55, p ≤ 0.05). The simulated rainfed grain yield (R2 = 0.66, p ≤ 0.05) had a significant, positive, and curvilinear relationship with growing season rainfall. On the other hand, the actual yield (R2 = 0.008) showed a non-significant relationship with mean crop seasonal rainfall across locations. The gap between simulated yield under irrigated and rainfed conditions is huge at locations with low seasonal rainfall and narrows with increasing rainfall. In addition, the gap between actual yield and simulated yield under rainfed conditions was larger, even in high seasonal rainfall areas. The yield gap under rainfed conditions is due to the non-adoption of improved crop management practices and could be reduced with proper interventions. This includes adapting drought-resistant varieties, conserving rainwater, changing land configuration, and adopting waterlogging-tolerant varieties using improved technology to reduce the soybean yield gap.
Journal Article
Optimizing Waterborne Polyacrylate Coating for Controlled-Release Fertilizer Using a Wurster Fluidized Bed and Its Effects on Rice Yield
by
Zhao, Cong
,
Huang, Xuefang
,
Du, Changwen
in
Acrylic resins
,
Agricultural production
,
Beds (process engineering)
2025
The efficacy of coated fertilizers in enhancing nutrient use efficiency and reducing environmental impacts depends on their coating properties. This study developed three biodegradable, waterborne polyacrylate latexes (A, B, and C) as eco-friendly coatings for controlled-release fertilizers (CRFs) using the Wurster fluidized bed process. The latexes were synthesized with varying hard-to-soft monomer ratios and cross-linked with 2 wt% aziridine to investigate how monomer composition affects coating properties and nutrient release. The results showed that coating B, which had an intermediate hard-to-soft monomer ratio, demonstrated optimal properties. It exhibited the lowest swelling capacity (2.54% at 60 °C), a suitable glass transition temperature (15.34 °C), and the slowest nutrient release, with cumulative nitrogen release remaining below 60% after 11 days in water at 40 °C. In field trials, the fertilizer coated with material B produced the highest rice yield among tested domestic CRF brands. It also achieved a significant 19.1% yield increase compared to a single basal application of conventional compound fertilizer. These findings confirm that this modified latex provides an effective and environmentally friendly solvent-free coating strategy for high-performance CRFs.
Journal Article
Effect of narrow-row planting patterns on crop competitive and economic advantage in maize-soybean relay strip intercropping system
by
Gao, Rencai
,
Wang, Xiaochun
,
Du, Junbo
in
A, aggressivity
,
Agricultural practices
,
Agricultural production
2017
Narrow-row planting patterns directly affect crop yield and competition in intercropping systems. A two-year (2012 and 2013) field experiment was conducted to determine the interactive behavior between intercrops in a maize-soybean relay strip intercropping system. Maize plants were planted in different narrow-wide row planting patterns, whereas soybean was planted in wide rows. The total biomass and grain yield of maize increased with increasing maize narrow-row spacing, but the opposite trend was observed for soybean. The aggressivity, competitive ratio, and partial relative crowding advantage values for maize were greater than those for soybean. Moreover, the competitive interaction of the intercrops was affected by the distance between maize and soybean rows. The highest intercrop land equivalent ratio (LER) 1.61 and 1.59 was found in the 40:160 planting pattern (i.e. 40 cm narrow-row spacing and 160 cm wide-row spacing of maize) during 2012 and 2013, respectively. Combined with actual yield loss and LER, the intense intra-specific competition of maize plants reduced the depression for the associated soybeans when the maize narrow-row spacing was less than 30 cm. When the narrow-row spacing was wider than 50 cm, soybean growth was seriously depressed by maize because of the stronger inter-specific competition between maize and soybean. The maximum yield and economic advantage appeared in the 40:160 narrow-wide row planting pattern. Therefore, intercropping advantage may be achieved by changing the row spacing and distance between intercrop rows to coordinate the inter-specific competition between maize and soybean.
Journal Article
Crop Yield Gaps in Cameroon
by
Ardö, Jonas
,
Yengoh, Genesis T.
in
Agricultural development
,
Agricultural management
,
Agricultural policy
2014
Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country’s ability to meet the food needs of its population. This study examines the country’s potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers’ fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers’ farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.
Journal Article
Model-based yield gap analysis and constraints of rainfed sorghum production in Southwest Ethiopia
by
Mamo, Girma
,
Worku, Walelign
,
Gayler, Sebastian
in
Agricultural practices
,
Agricultural production
,
Agricultural research
2020
For ensuring food demand of the fast growing population in developing countries, quantification of crop yield gaps and exploring production constraints are very crucial. Sorghum is one of the most important climate change resilient crops in the rainfed farming systems of semi-arid tropics. However, there is little information about yield gaps and production constraints. This study aimed at analysing existing yield gaps and exploring major constraints of sorghum production in Southwest Ethiopia. A crop simulation model approach using AquaCrop and DSSAT was used to estimate potential yield and analyse the yield gaps. Model calibration and evaluation was performed using data from field experiments conducted in 2018 and 2019. Sorghum production constraints were assessed using a survey. The actual and water-limited yield of sorghum ranged from 0.58 to 2.51 and 3.6 to 6.47 t/ha, respectively for the period 2003–17. The regional yield gaps of sorghum for the targeted period were 3.02–3.95 t/ha with a mean value of 3.51 t/ha. Majority of respondent farmers considered seasonal rainfall risk (98%), poor soil fertility (86%), lack of improved varieties (78%) and inadequate weed management (56%) as major factors responsible for the existing yield gaps. The mean exploitable yield gap (2.5 t/ha) between water-limited and actual yield showed the level of existing opportunity for improvement in the actual productivity of sorghum. The gaps also call for introduction of proper interventions such as adoption of improved varieties, planting date adjustment, conservation tillage, fertilizer application and on time weed management.
Journal Article
Analysis of the Spatial-Temporal Distribution Characteristics of Climate and Its Impact on Winter Wheat Production in Shanxi Province, China, 1964–2018
by
Dong, Qinge
,
Ge, Jiankun
,
Wu, Feng
in
actual yield
,
Agricultural practices
,
Agricultural production
2024
The possible influence of global climate changes on agricultural production is becoming increasingly significant, necessitating greater attention to improving agricultural production in response to temperature rises and precipitation variability. As one of the main winter wheat-producing areas in China, the temporal and spatial distribution characteristics of precipitation, accumulated temperature, and actual yield and climatic yield of winter wheat during the growing period in Shanxi Province were analysed in detail. With the utilisation of daily meteorological data collected from 12 meteorological stations in Shanxi Province in 1964–2018, our study analysed the change in winter wheat yield with climate change using GIS combined with wavelet analysis. The results show the following: (1) Accumulated temperature and precipitation are the two most important limiting factors among the main physical factors that impact yield. Based on the analysis of the ArcGIS geographical detector, the correlation between the actual yield of winter wheat and the precipitation during the growth period was the highest, reaching 0.469, and the meteorological yield and accumulated temperature during this period also reached its peak value of 0.376. (2) The regions with more suitable precipitation and accumulated temperature during the growth period of winter wheat in the study area had relatively high actual winter wheat yields. Overall, the average actual yield of the entire region showed a significant increasing trend over time, with an upward trend of 47.827 kg ha−1 yr−1. (3) The variation coefficient of winter wheat climatic yield was relatively stable in 2008–2018. In particular, there were many years of continuous reduction in winter wheat yields prior to 2006. Thereafter, the impact of climate change on winter wheat yields became smaller. This study expands our understanding of the complex interactions between climate variables and crop yield but also provides practical recommendations for enhancing agricultural practices in this region
Journal Article
Large scale assessment of the production process and rice yield gap analysis by comparative performance analysis and boundary-line analysis methods
by
Dastan, Salman
,
Hosein Ajam Norouzi
,
Gorjizad, Ahmad
in
Actual yield
,
Agricultural practices
,
Agricultural production
2019
To reduce the yield gap, specifying yield constraints in a particular area is necessary. A complete yield gap assessment method must provide information regarding potential yield, actual yield, and causes of the gap and their importance. Therefore, documenting the production process to explain crop management factors in each area is very important. The objective of the study was to perform a rice yield gap analysis by using comparative performance analysis (CPA) and boundary-line analysis (BLA). Data were gathered from about 100 paddy fields in Neka, eastern Mazandaran province, one of the major rice producing regions in Iran, in 2015 and 2016. All agricultural practices from nursery preparation to harvest have been recorded for improved rice cultivars. CPA focuses on the ability to estimate potential yield and the reason for a yield gap. Boundary lines were fitted to the edge of the data cloud of crop yield versus management variables in data from paddy fields monitoring. The documenting analysis shows that the range of paddy yield in 100 fields varied from 6100 to 8200 kg ha–1. Potential yields were 9241 kg ha–1 for CPA method, and 7999 kg ha–1 for BLA method. Furthermore, yield gap predicted 2047 kg ha–1 for CPA method and 874 kg ha–1 for BLA method. In BLA, the average relative yield and relative yield gap of the 13 investigated variables were 89.75% and 10.25% respectively. These results show the importance of each management factor in yield gap. It was concluded that CPA and BLA as applied in the study is a cheap and simple method that, without the need for expensive experimentation, is able to detect yield gap and its causes in a district. From these results, it can be said that the calculated yield gap is close to the definition given for the utilised yield gap and shows the difference between the actual yield and attainable yield in relation to the environmental conditions of the region.
Journal Article