Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
258 result(s) for "ADNI"
Sort by:
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data
While aggregation of neuroimaging datasets from multiple sites and scanners can yield increased statistical power, it also presents challenges due to systematic scanner effects. This unwanted technical variability can introduce noise and bias into estimation of biological variability of interest. We propose a method for harmonizing longitudinal multi-scanner imaging data based on ComBat, a method originally developed for genomics and later adapted to cross-sectional neuroimaging data. Using longitudinal cortical thickness measurements from 663 participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, we demonstrate the presence of additive and multiplicative scanner effects in various brain regions. We compare estimates of the association between diagnosis and change in cortical thickness over time using three versions of the ADNI data: unharmonized data, data harmonized using cross-sectional ComBat, and data harmonized using longitudinal ComBat. In simulation studies, we show that longitudinal ComBat is more powerful for detecting longitudinal change than cross-sectional ComBat and controls the type I error rate better than unharmonized data with scanner included as a covariate. The proposed method would be useful for other types of longitudinal data requiring harmonization, such as genomic data, or neuroimaging studies of neurodevelopment, psychiatric disorders, or other neurological diseases. [Display omitted]
Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: a multisite observational cohort study
ObjectiveTo investigate the relationship between amyloid burden and frequency of existing and incidence of new neuropsychiatric symptoms (NPS) in elderly with and without cognitive decline.Methods275 cognitively normal controls (NC), 100 subjective memory complaint (SMC), 559 mild cognitive impairment (MCI) and 143 Alzheimer’s disease dementia subjects from the Alzheimer’s Disease Neuroimaging Initiative received (18F)-florbetapir positron emission tomography (PET) scans. Yearly neuropsychiatric inventory (Neuropsychiatric Inventory (NPI)/NPI-Questionnaire) data were collected from the study partners at each visit. Mean standard uptake volume ratios (SUVR) normalised to whole cerebellum were obtained. Positive amyloid PET scan was defined as mean SUVR ≥1.17. Fisher’s exact test was used to compare frequency and incidence between amyloid positive and amyloid negative subjects. Survival analyses were used to estimate of neuropsychiatric symptoms (NPS) between amyloid positive and amyloid negative subjects. Survival analyses were used to estimate hazard ratios for developing the most common NPS by amyloid status.ResultsNo differences in NPS frequency were seen between amyloid positive and amyloid negative NC, SMC, MCI or dementia groups. MCI subjects with amyloid pathology however tended to have greater frequency x severity (FxS) of anxiety, hallucinations, delusions, apathy, disinhibition, irritability, aberrant motor behavior, and appetite, but not agitation, depression, night-time disturbances, or elation. MCI subjects with amyloid pathology were at greater risk for developing apathy, anxiety and agitation over time. Baseline presence of agitation and apathy and new onset agitation, irritability and apathy predicted faster conversion to dementia among MCI subjects.ConclusionsAmyloid pathology is associated with greater rate of development of new NPS in MCI. Anxiety and delusions are significant predictors of amyloid pathology. Agitation, irritability and apathy are significant predictors for conversion from MCI to dementia.
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease
Some forms of mild cognitive impairment (MCI) are the clinical precursors of Alzheimer's disease (AD), while other MCI types tend to remain stable over-time and do not progress to AD. To identify and choose effective and personalized strategies to prevent or slow the progression of AD, we need to develop objective measures that are able to discriminate the MCI patients who are at risk of AD from those MCI patients who have less risk to develop AD. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying MCI patients who have a high likelihood of developing AD within 3 years. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genetic data as input measures. The most novel characteristics of our machine learning model compared to previous ones are the following: 1) our deep learning model is multi-tasking, in the sense that it jointly learns to simultaneously predict both MCI to AD conversion as well as AD vs. healthy controls classification, which facilitates relevant feature extraction for AD prognostication; 2) the neural network classifier employs fewer parameters than other deep learning architectures which significantly limits data-overfitting (we use ∼550,000 network parameters, which is orders of magnitude lower than other network designs); 3) both structural MRI images and their warp field characteristics, which quantify local volumetric changes in relation to the MRI template, were used as separate input streams to extract as much information as possible from the MRI data. All analyses were performed on a subset of the database made publicly available via the Alzheimer's Disease Neuroimaging Initiative (ADNI), (n = 785 participants, n = 192 AD patients, n = 409 MCI patients (including both MCI patients who convert to AD and MCI patients who do not covert to AD), and n = 184 healthy controls). The most predictive combination of inputs were the structural MRI images and the demographic, neuropsychological, and APOe4 data. In contrast, the warp field metrics were of little added predictive value. The algorithm was able to distinguish the MCI patients developing AD within 3 years from those patients with stable MCI over the same time-period with an area under the curve (AUC) of 0.925 and a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5%, and specificity of 85%. To our knowledge, this is the highest performance achieved so far using similar datasets. The same network provided an AUC of 1 and 100% accuracy, sensitivity, and specificity when classifying patients with AD from healthy controls. Our classification framework was also robust to the use of different co-registration templates and potentially irrelevant features/image portions. Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and diverse other sets of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of several medical conditions and neuropsychiatric disorders via multi-modal imaging and tabular clinical data.
Effect of apolipoprotein E ε4 allele on the progression of cognitive decline in the early stage of Alzheimer's disease
Introduction Possession of the apolipoprotein E (APOE) ε4 allele advances amyloid β (Aβ) deposition and symptomatic onset of Alzheimer's disease (AD), whereas its effect on the rate of cognitive decline remained controversial. We examined the effects of APOE ε4 allele on cognition in biomarker‐confirmed late mild cognitive impairment (LMCI) and mild AD subjects in the Japanese Alzheimer's Disease Neuroimaging Initiative (J‐ADNI) and North American ADNI (NA‐ADNI). Methods The “early AD” (ie, combined LMCI and mild AD) cohort of 649 subjects from J‐ADNI and NA‐ADNI were selected based on positivity of Aβ confirmed by amyloid positron emission tomography (PET) or cerebrospinal fluid testing. The rates of cognitive decline in the Mini Mental State Examination (MMSE), the Clinical Dementia Rating Sum of Boxes (CDR‐SB), and the Alzheimer's Disease Assessment Scale‐cognitive subscale 13 (ADAS‐Cog) from baseline were examined using mixed‐effects model. The effect of ε4 on time to conversion to dementia was also analyzed in LMCI using the Kaplan‐Meier estimator and log‐rank test. Results The rates of cognitive decline were not significantly different between ε4 carriers and ε4 non‐carriers in the total early AD cohort, which were affected neither by region nor by the number of ε4 alleles. In LMCI, ε4 carriers showed almost the same progression rates as ε4 non‐carriers, except for a significantly faster decline in MMSE (P = .0282). Time to conversion to demenita was not significantly different between ε4 carriers and ε4 non‐carriers. In ε4‐positive mild AD, the rates of decline in MMSE (P = .003) and CDR‐SB (P = .0071) were slower than those in ε4 non‐carriers. DISCUSSION The APOE ε4 allele had little effect on the rates of cognitive decline in the overall biomarker‐confirmed early AD, regardless of region and number of ε4 alleles, with a slight variability in different clinical stages, the ε4 allele being slightly accelerative in LMCI, while decelerative in mild AD.
Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
Mild cognitive impairment (MCI) is a transitional stage between age-related cognitive decline and Alzheimer's disease (AD). For the effective treatment of AD, it would be important to identify MCI patients at high risk for conversion to AD. In this study, we present a novel magnetic resonance imaging (MRI)-based method for predicting the MCI-to-AD conversion from one to three years before the clinical diagnosis. First, we developed a novel MRI biomarker of MCI-to-AD conversion using semi-supervised learning and then integrated it with age and cognitive measures about the subjects using a supervised learning algorithm resulting in what we call the aggregate biomarker. The novel characteristics of the methods for learning the biomarkers are as follows: 1) We used a semi-supervised learning method (low density separation) for the construction of MRI biomarker as opposed to more typical supervised methods; 2) We performed a feature selection on MRI data from AD subjects and normal controls without using data from MCI subjects via regularized logistic regression; 3) We removed the aging effects from the MRI data before the classifier training to prevent possible confounding between AD and age related atrophies; and 4) We constructed the aggregate biomarker by first learning a separate MRI biomarker and then combining it with age and cognitive measures about the MCI subjects at the baseline by applying a random forest classifier. We experimentally demonstrated the added value of these novel characteristics in predicting the MCI-to-AD conversion on data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. With the ADNI data, the MRI biomarker achieved a 10-fold cross-validated area under the receiver operating characteristic curve (AUC) of 0.7661 in discriminating progressive MCI patients (pMCI) from stable MCI patients (sMCI). Our aggregate biomarker based on MRI data together with baseline cognitive measurements and age achieved a 10-fold cross-validated AUC score of 0.9020 in discriminating pMCI from sMCI. The results presented in this study demonstrate the potential of the suggested approach for early AD diagnosis and an important role of MRI in the MCI-to-AD conversion prediction. However, it is evident based on our results that combining MRI data with cognitive test results improved the accuracy of the MCI-to-AD conversion prediction. •Multi-step procedure combining several ideas for early AD-to-MCI conversion prediction•MRI biomarker using low density separation and auxiliary data from AD and NC subjects•Aggregate biomarker for combining MRI and cognitive test data•Cross-validated AUC 0.9020 for conversion prediction up to 3years before diagnosis
Overview of ADNI MRI
The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi‐platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex. To remain technically current, the ADNI MRI protocol has changed substantially over the past two decades. The ADNI 4 protocol contains nine different imaging types (e.g., three dimensional [3D] T1‐weighted and fluid‐attenuated inversion recovery [FLAIR]). Our view is that the ADNI MRI data are a greatly underutilized resource. The purpose of this paper is to educate the scientific community on ADNI MRI methods and content to promote greater awareness, accessibility, and use. Highlights The MRI Core provides multi‐platform standardized protocols, carefully curated image data, and quantitative analysis by expert groups. The ADNI MRI protocol has undergone major changes over the past two decades to remain technically current. As of April 25, 2024, the following numbers of image series are available: 17,141 3D T1w; 6877 FLAIR; 3140 T2/PD; 6623 GRE; 3237 dMRI; 2846 ASL; 2968 TF‐fMRI; and 2861 HighResHippo (see Table 1 for abbreviations). As of April 25, 2024, the following numbers of quantitative analyses are available: FreeSurfer 10,997; BSI 6120; tensor based morphometry (TBM) and TBM‐SYN 12,019; WMH 9944; dMRI 1913; ASL 925; TF‐fMRI NFQ 2992; and medial temporal subregion volumes 2726 (see Table 4 for abbreviations). ADNI MRI is an underutilized resource that could be more useful to the research community.
Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database
Magnetic resonance (MR) imaging is a powerful technique for non-invasive in - vivo imaging of the human brain. We employed a recently validated method for robust cross-sectional and longitudinal segmentation of MR brain images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Specifically, we segmented 5074 MR brain images into 138 anatomical regions and extracted time-point specific structural volumes and volume change during follow-up intervals of 12 or 24 months. We assessed the extracted biomarkers by determining their power to predict diagnostic classification and by comparing atrophy rates to published meta-studies. The approach enables comprehensive analysis of structural changes within the whole brain. The discriminative power of individual biomarkers (volumes/atrophy rates) is on par with results published by other groups. We publish all quality-checked brain masks, structural segmentations, and extracted biomarkers along with this article. We further share the methodology for brain extraction (pincram) and segmentation (MALPEM, MALPEM4D) as open source projects with the community. The identified biomarkers hold great potential for deeper analysis, and the validated methodology can readily be applied to other imaging cohorts.
Stacked CNN-based multichannel attention networks for Alzheimer disease detection
Alzheimer's Disease (AD) is a progressive condition of a neurological brain disorder recognized by symptoms such as dementia, memory loss, alterations in behaviour, and impaired reasoning abilities. Recently, many researchers have been working to develop an effective AD recognition system using deep learning (DL) based convolutional neural network (CNN) model aiming to deploy the automatic medical image diagnosis system. The existing system is still facing difficulties in achieving satisfactory performance in terms of accuracy and efficiency because of the lack of feature ineffectiveness. This study proposes a lightweight Stacked Convolutional Neural Network with a Channel Attention Network (SCCAN) for MRI based on AD classification to overcome the challenges. In the procedure, we sequentially integrate 5 CNN modules, which form a stack CNN aiming to generate a hierarchical understanding of features through multi-level extraction, effectively reducing noise and enhancing the weight's efficacy. This feature is then fed into a channel attention module to select the practical features based on the channel dimension, facilitating the selection of influential features. . Consequently, the model exhibits reduced parameters, making it suitable for training on smaller datasets. Addressing the class imbalance in the Kaggle MRI dataset, a balanced distribution of samples among classes is emphasized. Extensive experiments of the proposed model with the ADNI1 Complete 1Yr 1.5T, Kaggle, and OASIS-1 datasets showed 99.58%, 99.22%, and 99.70% accuracy, respectively. The proposed model's high performance surpassed state-of-the-art (SOTA) models and proved its excellence as a significant advancement in AD classification using MRI images.
The ADNI PET Core at 20
The Alzheimer's Disease Neuroimaging Initiative (ADNI) PET Core has evolved over time, beginning with positron emission tomography (PET) imaging of a subsample of participants with [18F]fluorodeoxyglucose (FDG)‐PET, adding tracers for measurement of β‐amyloid, followed by tau tracers. This review examines the evolution of the ADNI PET Core, the novel aspects of PET imaging in each stage of ADNI, and gives an accounting of PET images available in the ADNI database. The ADNI PET Core has been and continues to be a rich resource that provides quantitative PET data and preprocessed PET images to the scientific community, allowing interrogation of both basic and clinically relevant questions. By standardizing methods across different PET scanners and multiple PET tracers, the Core has demonstrated the feasibility of large‐scale, multi‐center PET studies. Data managed and disseminated by the PET Core has been critical to defining pathophysiological models of Alzheimer's disease (AD) and helped to drive methods used in modern therapeutic trials. Highlights The ADNI PET Core began with FDG‐PET and now includes three amyloid and three tau PET ligands. The PET Core has standardized acquisition and analysis of multitracer PET images. The ADNI PET Core helped to develop methods that have facilitated clinical trials in AD.
The accuracy and robustness of plasma biomarker models for amyloid PET positivity
Background Plasma biomarkers for Alzheimer’s disease (AD) have broad potential as screening tools in primary care and disease-modifying trials. Detecting elevated amyloid-β (Aβ) pathology to support trial recruitment or initiating Aβ-targeting treatments would be of critical value. In this study, we aimed to examine the robustness of plasma biomarkers to detect elevated Aβ pathology at different stages of the AD continuum. Beyond determining the best biomarker—or biomarker combination—for detecting this outcome, we also simulated increases in inter-assay coefficient of variability (CV) to account for external factors not considered by intra-assay variability. With this, we aimed to determine whether plasma biomarkers would maintain their accuracy if applied in a setting which anticipates higher variability (i.e., clinical routine). Methods We included 118 participants (cognitively unimpaired [CU, n  = 50], cognitively impaired [CI, n  = 68]) from the ADNI study with a full plasma biomarker profile (Aβ42/40, GFAP, p-tau181, NfL) and matched amyloid imaging. Initially, we investigated how simulated CV variations impacted single-biomarker discriminative performance of amyloid status. Then, we evaluated the predictive performance of models containing different biomarker combinations, based both on original and simulated measurements. Plasma Aβ42/40 was represented by both immunoprecipitation mass spectrometry (IP-MS) and single molecule array (Simoa) methods in separate analyses. Model selection was based on a decision tree which incorporated Akaike information criterion value, likelihood ratio tests between the best-fitting models and, finally, and Schwartz’s Bayesian information criterion. Results Increasing variation greatly impacted the performance of plasma Aβ42/40 in discriminating Aβ status. In contrast, the performance of plasma GFAP and p-tau181 remained stable with variations >20%. When biomarker models were compared, the models “AG” (Aβ42/40 + GFAP; AUC = 86.5), “A” (Aβ42/40; AUC = 82.3), and “AGP” (Aβ42/40 + GFAP + p-tau181; AUC = 93.5) were superior in determining Aβ burden in all participants, within-CU, and within-CI groups, respectively. In the robustness analyses, when repeating model selection based on simulated measurements, models including IP-MS Aβ42/40 were also most often selected. Simoa Aβ42/40 did not contribute to any selected model when used as an immunoanalytical alternative to IP-MS Aβ42/40. Conclusions Plasma Aβ42/40, as quantified by IP-MS, shows high performance in determining Aβ positivity at all stages of the AD continuum, with GFAP and p-tau181 further contributing at CI stage. However, between-assay variations greatly impacted the performance of Aβ42/40 but not that of GFAP and p-tau181. Therefore, when dealing with between-assay CVs that exceed 5%, plasma GFAP and p-tau181 should be considered for a more robust determination of Aβ burden in CU and CI participants, respectively.