Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
498
result(s) for
"AIDS Vaccines - biosynthesis"
Sort by:
Broad neutralization coverage of HIV by multiple highly potent antibodies
by
Wilson, Ian A.
,
Ramos, Alejandra
,
Burton, Dennis R.
in
631/250/2152/2153/1291
,
631/250/24/590
,
692/699/249/1570/1901
2011
Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies
1
,
2
,
3
. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.
Journal Article
Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines
by
Carabineiro, Sónia
in
Acquired Immunodeficiency Syndrome - immunology
,
Acquired Immunodeficiency Syndrome - pathology
,
Acquired Immunodeficiency Syndrome - prevention & control
2017
Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.
Journal Article
Design of immunogens to elicit broadly neutralizing antibodies against HIV targeting the CD4 binding site
by
Chakraborty, Arup K.
,
Burton, Dennis R.
,
Karplus, Martin
in
AIDS Vaccines - biosynthesis
,
AIDS Vaccines - chemistry
,
AIDS Vaccines - genetics
2021
A vaccine which is effective against the HIV virus is considered to be the best solution to the ongoing global HIV/AIDS epidemic. In the past thirty years, numerous attempts to develop an effective vaccine have been made with little or no success, due, in large part, to the high mutability of the virus. More recent studies showed that a vaccine able to elicit broadly neutralizing antibodies (bnAbs), that is, antibodies that can neutralize a high fraction of global virus variants, has promise to protect against HIV. Such a vaccine has been proposed to involve at least three separate stages: First, activate the appropriate precursor B cells; second, shepherd affinity maturation along pathways toward bnAbs; and, third, polish the Ab response to bind with high affinity to diverse HIV envelopes (Env). This final stage may require immunization with a mixture of Envs. In this paper, we set up a framework based on theory and modeling to design optimal panels of antigens to use in such a mixture. The designed antigens are characterized experimentally and are shown to be stable and to be recognized by known HIV antibodies.
Journal Article
Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts
by
Allan, Jonathan S
,
Douek, Daniel C
,
Schmitz, Jörn E
in
Acquired immune deficiency syndrome
,
Acquired Immunodeficiency Syndrome - therapy
,
Adaptation
2009
The design of an effective AIDS vaccine has eluded the efforts of the scientific community to the point that alternative approaches to classic vaccine formulations have to be considered. We propose here that HIV vaccine research could greatly benefit from the study of natural simian immunodeficiency virus (SIV) infections of African nonhuman primates. Natural SIV hosts (for example, sooty mangabeys, African green monkeys and mandrills) share many features of HIV infection of humans; however, they usually do not develop immunodeficiency. These natural, nonprogressive SIV infections represent an evolutionary adaptation that allows a peaceful coexistence of primate lentiviruses and the host immune system. This adaptation does not result in reduced viral replication but, rather, involves phenotypic changes to CD4
+
T cell subsets, limited immune activation and preserved mucosal immunity, all of which contribute to the avoidance of disease progression and, possibly, to the reduction of vertical SIV transmission. Here we summarize the current understanding of SIV infection of African nonhuman primates and discuss how unraveling these evolutionary adaptations may provide clues for new vaccine designs that might induce effective immune responses without the harmful consequences of excessive immune activation.
Journal Article
Vaccine-elicited primate antibodies use a distinct approach to the HIV-1 primary receptor binding site informing vaccine redesign
by
Christian Poulsen
,
Robyn L. Stanfield
,
Andrew B. Ward
in
AIDS Vaccines - biosynthesis
,
AIDS Vaccines - immunology
,
alanine
2014
HIV-1 neutralization requires Ab accessibility to the functional envelope glycoprotein (Env) spike. We recently reported the isolation of previously unidentified vaccine-elicited, CD4 binding site (CD4bs)-directed mAbs from rhesus macaques immunized with soluble Env trimers, indicating that this region is immunogenic in the context of subunit vaccination. To elucidate the interaction of the trimer-elicited mAbs with gp120 and their insufficient interaction with the HIV-1 primary isolate spike, we crystallized the Fab fragments of two mAbs, GE136 and GE148. Alanine scanning of their complementarity-determining regions, coupled with epitope scanning of their epitopes on gp120, revealed putative contact residues at the Ab/gp120 interface. Docking of the GE136 and GE148 Fabs to gp120, coupled with EM reconstructions of these nonbroadly neutralizing mAbs (non-bNAbs) binding to gp120 monomers and EM modeling to well-ordered trimers, suggested Ab approach to the CD4bs by a vertical angle of access relative to the more lateral mode of interaction used by the CD4bs-directed bNAbs VRC01 and PGV04. Fitting the structures into the available cryo-EM native spike density indicated clashes between these two vaccine-elicited mAbs and the topside variable region spike cap, whereas the bNAbs duck under this quaternary shield to access the CD4bs effectively on primary HIV isolates. These results provide a structural basis for the limited neutralizing breadth observed by current vaccine-induced, CD4bs-directed Abs and highlight the need for better ordered trimer immunogens. The analysis presented here therefore provides valuable information to guide HIV-1 vaccine immunogen redesign.
Journal Article
DNA-MVA-protein vaccination of rhesus macaques induces HIV-specific immunity in mucosal-associated lymph nodes and functional antibodies
by
Montefiori, David
,
Williamson, Carolyn
,
Gray, Clive M.
in
Acquired immune deficiency syndrome
,
adjuvants
,
Adjuvants, Immunologic - administration & dosage
2017
Successful future HIV vaccines are expected to generate an effective cellular and humoral response against the virus in both the peripheral blood and mucosal compartments. We previously reported the development of DNA-C and MVA-C vaccines based on HIV-1 subtype C and demonstrated their immunogenicity when given in a DNA prime-MVA boost combination in a nonhuman primate model. In the current study, rhesus macaques previously vaccinated with a DNA-C and MVA-C vaccine regimen were re-vaccinated 3.5years later with MVA-C followed by a protein vaccine based on HIV-1 subtype C envelope formulated with MF59 adjuvant (gp140Env/MF59), and finally a concurrent boost with both vaccines. A single MVA-C re-vaccination elicited T cell responses in all animals similar to previous peak responses, with 4/7 demonstrating responses >1000 SFU/106 PBMC. In contrast to an Env/MF59-only vaccine, concurrent boosting with MVA-C and Env/MF59 induced HIV-specific cellular responses in multiple mucosal associated lymph nodes in 6/7 animals, with high magnitude responses in some animals. Both vaccine regimens induced high titer Env-specific antibodies with ADCC activity, as well as neutralization of Tier 1 viruses and modest Tier 2 neutralization. These data demonstrate the feasibility of inducing HIV-specific immunity in the blood and mucosal sites of viral entry by means of DNA and poxvirus-vectored vaccines, in combination with a HIV envelope-based protein vaccine.
Journal Article
Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?
by
Stamatatos, Leonidas
,
Mascola, John R
,
Burton, Dennis R
in
AIDS vaccines
,
AIDS Vaccines - biosynthesis
,
AIDS Vaccines - therapeutic use
2009
Most existing viral vaccines generate antibodies that either block initial infection or help eradicate the virus before it can cause disease. For HIV-1, obstacles to eliciting protective neutralizing antibodies (NAbs) have often seemed insurmountable. The target of HIV-specific NAbs, the viral envelope glycoprotein (Env), is highly variable in amino acid sequence and glycosylation pattern. Conserved elements of HIV-1 Env seem to be poorly immunogenic, and previous attempts to generate broadly reactive NAbs by vaccination have proven ineffective. However, recent studies show that antibodies in the sera of some HIV-1–infected individuals can neutralize diverse HIV-1 isolates. Detailed analyses of these sera provide new insights into the viral epitopes targeted by broadly reactive NAbs. The findings discussed here suggest that the natural NAb response to HIV-1 can inform future vaccine design. A concerted effort of structure-based vaccine design will help guide the development of improved antibody-based vaccines for HIV-1.
Journal Article
Potential Future Impact of a Partially Effective HIV Vaccine in a Southern African Setting
by
Nakagawa, Fumiyo
,
Lundgren, Jens D.
,
Van Effelterre, Thierry
in
Acquired immune deficiency syndrome
,
Adult
,
Africa, Southern - epidemiology
2014
It is important for public health and within the HIV vaccine development field to understand the potential population level impact of an HIV vaccine of partial efficacy--both in preventing infection and in reducing viral load in vaccinated individuals who become infected--in the context of a realistic future implementation scenario in resource limited settings.
An individual level model of HIV transmission, progression and the effect of antiretroviral therapy was used to predict the outcome to 2060 of introduction in 2025 of a partially effective vaccine with various combinations of efficacy characteristics, in the context of continued ART roll-out in southern Africa.
In the context of our base case epidemic (in 2015 HIV prevalence 28% and incidence 1.7 per 100 person years), a vaccine with only 30% preventative efficacy could make a substantial difference in the rate with which HIV incidence declines; the impact on incidence in relative terms is projected to increase over time, with a projected 67% lower HIV incidence in 2060 compared with no vaccine introduction. The projected mean decline in the general adult population death rate 2040-2060 is 11%. A vaccine with no prevention efficacy but which reduces viral load by 1 log is predicted to result in a modest (14%) reduction in HIV incidence and an 8% reduction in death rate in the general adult population (mean 2040-2060). These effects were broadly similar in multivariable uncertainty analysis.
Introduction of a partially effective preventive HIV vaccine would make a substantial long-term impact on HIV epidemics in southern Africa, in addition to the effects of ART. Development of an HIV vaccine, even of relatively low apparent efficacy at the individual level, remains a critical global public health goal.
Journal Article
Immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic HIV protein
by
Varona-Santos, Javier T.
,
Moreno-Fierros, Leticia
,
Rubio-Infante, Néstor
in
Agriculture
,
AIDS Vaccines - biosynthesis
,
Animals
2013
Elicitation of broad humoral immune responses is a critical factor in the development of effective HIV vaccines. In an effort to develop low-cost candidate vaccines based on multiepitopic recombinant proteins, this study has been undertaken to assess and characterize the immunogenic properties of a lettuce-derived C4(V3) 6 multi-epitopic protein. This protein consists of V3 loops corresponding to five different HIV isolates, including MN, IIIB, RF, CC, and RU. In this study, both Escherichia coli and lettuce-derived C4(V3) 6 have elicited local and systemic immune responses when orally administered to BALB/c mice. More importantly, lettuce-derived C4(V3)6 has shown a higher immunogenic potential than that of E. coli-derived C4(V3)6. Moreover, when reactivity of sera from mice immunized with C4(V3)6 are compared with those elicited by a chimeric protein carrying a single V3 sequence, broader responses have been observed. The lettuce-derived C4(V3)6 has elicited antibodies with positive reactivity against V3 loops from isolates MN, RF, and CC. In addition, splenocyte proliferation assays indicate that significant T-helper responses are induced by the C4(V3)6 immunogen. Taken together, these findings account for the observed elicitation of broader humoral responses by the C4(V3)6 multiepitopic protein. Moreover, they provide further validation for the production of multiepitopic vaccines in plant cells as this serves not only as a low-cost expression system, but also as an effective delivery vehicle for orally administered immunogens.
Journal Article
A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract
2016
Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4+ T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4+ T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4+ and CD8+ T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.
Journal Article