Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "AIP4"
Sort by:
The E3 Ubiquitin Ligase Itch Controls the Protein Stability of p63
p63, a member of the p53 family of transcription factors, plays an important role in epithelial development, regulating both cell cycle and apoptosis. Even though p63 activity is regulated mainly at the posttranslational level, the control of p63 protein stability is far from being fully understood. Here, we show that the Hect (homologous to the E6-associated protein C terminus)-containing Nedd4-like ubiquitin protein ligase Itch binds, ubiquitylates, and promotes the degradation of p63. The physical interaction occurs at the border between the PY and the SAM (sterile α motif) domains; a single Y504F mutation significantly affects p63 degradation. Itch and p63 are coexpressed in the epidermis and in primary keratinocytes where Itch controls the p63 protein steadystate level. Accordingly, p63 protein levels are significantly increased in Itch knockout keratinocytes. These data suggest that Itch has a fundamental role in the mechanism that controls endogenous p63 protein levels and therefore contributes to regulation of p63 in physiological conditions.
Deletion of Wild-type p53 Facilitates Bone Metastatic Function by Blocking the AIP4 Mediated Ligand-Induced Degradation of CXCR4
Background: Management of patients with prostate cancer and bone metastatic disease remains a major clinical challenge. Loss or mutation of p53 has been identified to be involved in the tumor progression and metastasis. Nevertheless, direct evidence of a specific role for wild-type p53 (wt-p53) in bone metastasis and the mechanism by which this function is mediated in prostate cancer remain obscure. Methods: The expression and protein levels of wt-53, AIP4, and CXCR4 in prostate cancer cells and clinical specimens were assessed by real-time PCR, immunohistochemistry and western blot analysis. The role of wt-p53 in suppressing aggressive and metastatic tumor phenotypes was assessed using in vitro transwell chemotaxis, wound healing, and competitive colocalization assays. Furthermore, whether p53 deletion facilitates prostate cancer bone-metastatic capacity was explored using an in vivo bone-metastatic model. The mechanistic model of wt-p53 in regulating gene expression was further explored by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Results: Our findings revealed that wt-p53 suppressed the prostate cancer cell migration rate, chemotaxis and attachment toward the osteoblasts in vitro . The bone-metastatic model showed that deletion of wt-p53 remarkably increased prostate cancer bone-metastatic capacity in vivo . Mechanistically, wt-p53 could induce the ligand-induced degradation of the chemokine receptor CXCR4 by transcriptionally upregulating the expression of ubiquitin ligase AIP4. Treatment with the CXCR4 inhibitor AMD3100 or transduction of the AIP4 plasmid abrogated the pro-bone metastasis effects of TP53 deletion. Conclusion: Wt-p53 suppresses the metastasis of prostate cancer cells to bones by regulating the CXCR4/CXCL12 activity in the tumor cells/bone marrow microenvironment interactions. Our findings suggest that targeting the wt-p53/AIP4/CXCR4 axis might be a promising therapeutic strategy to manage prostate cancer bone metastasis.
Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains
Deltex (DTX) and AIP4 are the human orthologues of the Drosophila deltex and Suppressor of deltex, which have been genetically described as being antagonistically involved in the Notch signalling pathway. Both genes encode E3 ubiquitin ligases of the RING (Really interesting new gene)‐H2 and HECT (Homologous to E6AP carboxyl terminus) families, respectively. In an attempt to understand the molecular basis of their genetic interactions, we studied the relationship between DTX and AIP4 in the absence of activation of the Notch pathway. We show here that both molecules interact and partially colocalize to endocytic vesicles, and that AIP4 targets DTX for lysosomal degradation. Furthermore, AIP4‐generated polyubiquitin chains are mainly conjugated through lysine 29 of ubiquitin in vivo , indicating a link between this type of chain and lysosomal degradation.
Molecular Interactions between Two LMP2A PY Motifs of EBV and WW Domains of E3 Ubiquitin Ligase AIP4
Interactions involving Epstein–Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin–protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded anti-parallel β-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with the XP groove of the WW2 domain (residues located around the third β-strand), and then residues between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2 domain. In particular, the residue Val15 in the hairpin loop region between β1 and β2 of the WW2 domain exhibited unique changes depending on the terminal residues of the PY motif. This result suggested that the hairpin loop is responsible for additional interactions outside the XP groove, and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide interactions can stabilize the complex formed between the PY and WW domains.
Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms
Endocytosis and subsequent lysosomal degradation serve as a well characterized mechanism to fine-tune and down-regulate EGFR signaling. However, other members of the EGFR/ErbB receptor family have been reported to be endocytosis-impaired. Here we demonstrate that endocytosis of ErbB4 is regulated in an isoform-specific manner: CYT-1 isoforms were efficiently endocytosed whereas CYT-2 isoforms were endocytosis-impaired. CYT-1 isoforms in endocytic vesicles colocalized with Rab5 and Rab7 indicating trafficking via early endosomes to late endosomal/lysosomal structures. A PPXY motif within the CYT-1-specific sequence that lacks from CYT-2 was necessary both for ubiquitination and endocytosis of CYT-1 isoforms and provided a binding site for a WW domain-containing ubiquitin ligase Itch. Itch catalyzed ubiquitination of ErbB4 CYT-1, promoted its localization into intracellular vesicles, and stimulated degradation of ErbB4 CYT-1. Dominant negative Itch suppressed ErbB4 CYT-1 endocytosis and degradation. These data indicate that ErbB4 isoforms differ in endocytosis and degradation by a mechanism mediated by CYT-1-specific PPXY motif interacting with a WW domain-containing E3 ubiquitin ligase.
Itch/AIP4-independent proteasomal degradation of cFLIP induced by the histone deacetylase inhibitor SAHA sensitizes breast tumour cells to TRAIL
Summary The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, vorinostat) is undergoing clinical trials as an antitumor drug and has received regulatory approval for cancer treatment. Here, we show that pre-treatment of human breast cancer cells with SAHA makes them susceptible to apoptosis induced by TRAIL (tumour necrosis factor-related apoptosis-inducing ligand). The apoptosis of breast tumour cells induced by TRAIL is blocked at the level of apical activation of caspase-8 and SAHA enhances the TRAIL-induced processing of procaspase-8. Consequently, a TRAIL associated pathway of apoptosis operated via mitochondria is activated in cells treated with SAHA. Interestingly, degradation of cellular FLICE-inhibitory proteins (cFLIP L and cFLIP S ) by an ubiquitin/proteasome-dependent Itch/AIP4-independent mechanism is observed upon exposure to SAHA. Targeting cFLIP L directly with siRNA oligonucleotides also sensitizes human breast tumour cells to TRAIL-induced apoptosis. Furthermore, cFLIP L over-expression significantly inhibits the apoptosis elicited through the combined effects of SAHA and TRAIL. Together, these results indicate that SAHA sensitizes breast cancer cells to TRAIL-induced apoptosis by facilitating the activation of early events in the apoptotic TRAIL pathway. Therefore, the combination of TRAIL and SAHA may represent a therapeutic tool to combat breast tumours.
The Shb signalling scaffold binds to and regulates constitutive signals from the Epstein–Barr virus LMP2A membrane protein
The Epstein–Barr virus latency-associated membrane protein LMP2A has been shown to activate the survival kinase Akt in epithelial and B cells in a phosphoinositide 3-kinase-dependent fashion. In this study, we demonstrate that the signalling scaffold Shb associates through SH2 and PTB domain interactions with phosphorylated tyrosine motifs in the LMP2A N-terminal tail. Additionally, we show that mutation of tyrosines in these motifs as well as shRNA-mediated downregulation of Shb leads to a loss of constitutive Akt-activation in LMP2A-expressing cells. Furthermore, utilization by Shb of the LMP2A ITAM motif regulates stability of the Syk tyrosine kinase in LMP2A-expressing cells. Our data set the precedent for viral utilization of the Shb signalling scaffold and implicate Shb as a regulator of LMP2A-dependent Akt activation.