Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
140 result(s) for "ATMPs"
Sort by:
ARM’s Perspective on the First Joint Clinical Assessments for ATMPs: Challenges and Opportunities on the Path Ahead
Advanced Therapy Medicinal Products (ATMPs) are revolutionising modern medicine. By addressing the root cause rather than the symptoms of disease, ATMPs hold the promise of long-lasting benefits or even cures for severe, genetic, and rare diseases—including rare cancers—for patients with few or no viable treatment options. At the same time, the inherent complexities of ATMPs pose challenges to traditional HTA frameworks. Unlike conventional treatments, ATMPs are often one-time therapies with a high magnitude of effect. However, their long-term durability remains uncertain at launch. The Joint Clinical Assessment (JCA), under the EU’s Health Technology Assessment (HTA) Regulation, represents a once-in-a-generation opportunity to consolidate the strengths of national HTA processes into a unified framework that accounts for the specificities of ATMPs and streamlines decision-making, cementing Europe’s position as a pioneer in innovative HTA approaches. While concerns remain regarding the suitability of current JCA methodologies for ATMPs, the HTA Regulation continues to bring the HTA ecosystem closer together, with numerous benefits already emerging from EU-wide collaboration on JCAs. This article outlines the HTA challenges posed for and by ATMPs, and ARM’s perspective on the JCA’s implementation. A ‘fit for purpose’ JCA holds the promise to unlocking these therapies’ benefits for individuals across Europe.
Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts
Chimeric antigen receptor (CAR) T cell therapy, together with checkpoint inhibition, has been celebrated as a breakthrough technology due to the substantial benefit observed in clinical trials with patients suffering from relapsed or refractory B‐cell malignancies. In this review, we provide a comprehensive overview of the clinical trials performed so far worldwide and analyze parameters such as targeted antigen and indication, CAR molecular design, CAR T cell manufacturing, anti‐tumor activities, and related toxicities. More than 200 CAR T cell clinical trials have been initiated so far, most of which aim to treat lymphoma or leukemia patients using CD19‐specific CARs. An increasing number of studies address solid tumors as well. Notably, not all clinical trials conducted so far have shown promising results. Indeed, in a few patients CAR T cell therapy resulted in severe adverse events with fatal outcome. Of note, less than 10% of the ongoing CAR T cell clinical trials are performed in Europe. Taking lead from our analysis, we discuss the problems and general hurdles preventing efficient clinical development of CAR T cells as well as opportunities, with a special focus on the European stage. Graphical Abstract Authoritative, insightful overview of the problems and general hurdles preventing efficient clinical development of chimeric antigen receptor (CAR) T cell therapy for cancer as well as future opportunities.
Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19
Adipose-derived stem cells (ADSCs) have raised big interest in therapeutic applications in regenerative medicine and appear to fulfill the criteria for a successful cell therapy. Their low immunogenicity and their ability to self-renew, to differentiate into different tissue-specific progenitors, to migrate into damaged sites, and to act through autocrine and paracrine pathways have been altogether testified as the main mechanisms whereby cell repair and regeneration occur. The absence of standardization protocols in cell management within laboratories or facilities added to the new technologies improved at patient’s bedside and the discrepancies in cell outcomes and engraftment increase the limitations on their widespread use by balancing their real benefit versus the patient safety and security. Also, comparisons across pooled patients are particularly difficult in the fact that multiple medical devices are used and there is absence of harmonized assessment assays despite meeting regulations agencies and efficient GMP protocols. Moreover, the emergence of the COVID-19 breakdown added to the complexity of implementing standardization. Cell- and tissue-based therapies are completely dependent on the biological manifestations and parameters associated to and induced by this virus where the scope is still unknown. The initial flow chart identified for stem cell therapies should be reformulated and updated to overcome patient infection and avoid significant variability, thus enabling more patient safety and therapeutic efficiency. The aim of this work is to highlight the major guidelines and differences in ADSC processing meeting the current good manufacturing practices (cGMP) and the cellular therapy-related policies. Specific insights on standardization of ADSCs proceeding at different check points are also presented as a setup for the cord blood and bone marrow.
Current approaches to develop “off-the-shelf” chimeric antigen receptor (CAR)-T cells for cancer treatment: a systematic review
Chimeric antigen receptor (CAR)-T cell therapy is one of the most promising advances in cancer treatment. It is based on genetically modified T cells to express a CAR, which enables the recognition of the specific tumour antigen of interest. To date, CAR-T cell therapies approved for commercialisation are designed to treat haematological malignancies, showing impressive clinical efficacy in patients with relapsed or refractory advanced-stage tumours. However, since they all use the patient´s own T cells as starting material (i.e. autologous use), they have important limitations, including manufacturing delays, high production costs, difficulties in standardising the preparation process, and production failures due to patient T cell dysfunction. Therefore, many efforts are currently being devoted to contribute to the development of safe and effective therapies for allogeneic use, which should be designed to overcome the most important risks they entail: immune rejection and graft-versus-host disease (GvHD). This systematic review brings together the wide range of different approaches that have been studied to achieve the production of allogeneic CAR-T cell therapies and discuss the advantages and disadvantages of every strategy. The methods were classified in two major categories: those involving extra genetic modifications, in addition to CAR integration, and those relying on the selection of alternative cell sources/subpopulations for allogeneic CAR-T cell production (i.e. γδ T cells, induced pluripotent stem cells (iPSCs), umbilical cord blood T cells, memory T cells subpopulations, virus-specific T cells and cytokine-induced killer cells). We have observed that, although genetic modification of T cells is the most widely used approach, new approaches combining both methods have emerged. However, more preclinical and clinical research is needed to determine the most appropriate strategy to bring this promising antitumour therapy to the clinical setting.
Systematic review and meta-analysis of cell therapy for COVID-19: global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery
During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection.
Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations
Induced pluripotent stem cells (iPSCs) can self-renew indefinitely in culture and differentiate into all specialized cell types including gametes. iPSCs do not exist naturally and are instead generated (“induced” or “reprogrammed”) in culture from somatic cells through ectopic co-expression of defined pluripotency factors. Since they can be generated from any healthy person or patient, iPSCs are considered as a valuable resource for regenerative medicine to replace diseased or damaged tissues. In addition, reprogramming technology has provided a powerful tool to study mechanisms of cell fate decisions and to model human diseases, thereby substantially potentiating the possibility to (i) discover new drugs in screening formats and (ii) treat life-threatening diseases through cell therapy-based strategies. However, various legal and ethical barriers arise when aiming to exploit the full potential of iPSCs to minimize abuse or unauthorized utilization. In this review, we discuss bioethical, legal, and societal concerns associated with research and therapy using iPSCs. Furthermore, we present key questions and suggestions for stem cell scientists, legal authorities, and social activists investigating and working in this field.
Endometriosis: Future Biological Perspectives for Diagnosis and Treatment
Endometriosis is an oestrogen-dependent inflammatory disease affecting menstruating women, with varying levels of severity. Oestrogen dysregulation is responsible for chronic inflammation, angiogenesis, endometrial lesion development, progression, and infertility during menarche in afflicted women. The inflammatory mediators associated with this chronic painful disease have been established, with research also indicating the relationship between dysbiosis and disease manifestation. Endometriosis is also present with several painful comorbidities, including endometrial cancer, cardiovascular disease, and autoimmunity. The lack of specific and sensitive non-invasive diagnostic procedures, coupled with poor response to current therapeutic approaches, means that treatment needs remain unmet. Surgical procedures are performed to remove endometriosis ectopic lesions, for which the recurrence rate of disease is up to 50%, with certain patients exhibiting no alleviation of symptoms. This review aims to outline the aetiology of endometriosis, detailing novel diagnostic approaches and potential therapeutic approaches, namely advanced therapeutic medical products (ATMPs), including stem cell therapy and clustered regularly interspaced short palindromic repeats (CRISPR) gene editing. This timely review also provides novel insights into the important recent modalities which may be applied for the diagnosis and therapeutic response of endometriosis, including biomarkers, microfluidic platforms, and organoid systems. Undoubtedly, reliable, reproducible, sensitive, and specific models of endometriosis in humans are urgently needed to investigate and detail the aetiology of this debilitating disease.
The Relevance of Advanced Therapy Medicinal Products in the Field of Transplantation and the Need for Academic Research Access: Overcoming Bottlenecks and Claiming a New Time
The field of transplantation has witnessed the emergence of Advanced Therapy Medicinal Products (ATMPs) as highly promising solutions to address the challenges associated with organ and tissue transplantation. ATMPs encompass gene therapy, cell therapy, and tissue-engineered products, hold immense potential for breakthroughs in overcoming the obstacles of rejection and the limited availability of donor organs. However, the development and academic research access to ATMPs face significant bottlenecks that hinder progress. This opinion paper emphasizes the importance of addressing bottlenecks in the development and academic research access to ATMPs by implementing several key strategies. These include the establishment of streamlined regulatory processes, securing increased funding for ATMP research, fostering collaborations and partnerships, setting up centralized ATMP facilities, and actively engaging with patient groups. Advocacy at the policy level is essential to provide support for the development and accessibility of ATMPs, thereby driving advancements in transplantation and enhancing patient outcomes. By adopting these strategies, the field of transplantation can pave the way for the introduction of innovative and efficacious ATMP therapies, while simultaneously fostering a nurturing environment for academic research.
Price and reimbursement of advanced therapeutic medicinal products in Europe: are assessment and appraisal diverging from expert recommendations?
Background Advanced therapy medicinal products (ATMPs) represent an important cornerstone for innovation in healthcare. However, uncertainty on the value, the high average cost per patient and their one-shot nature has raised a debate on their assessment and appraisal process for pricing and reimbursement (P&R) purposes. This debate led experts providing for recommendations on this topic. Our primary objective is to investigate the ATMPs P&R process in the main five European countries and to understand if this process is consistent with published P&R expert recommendations. We also investigated the current ATMP pipelines to understand if future ATMPs will create challenges for their P&R process. Methods P&R framework for ATMPs in the European Major five (EU5) countries was investigated through a literature search on PubMed, institutional websites of National Health Authorities and grey literature. The ATMPs pipeline database was populated from a clinical trial database (clinicaltrials.gov), relying on inclusion and exclusion criteria retrieved from the literature. Results Reimbursement status of ATMPs is different across the EU5 countries, with the exception of CAR-Ts which are reimbursed in all countries. Standard P&R process in place for other medicinal products is extended to ATMPs, with the exception of some cases in Germany. List prices, where available, are high and, tend to be aligned across countries. Outcome-based Managed Entry Agreements (MEAs) have been extensively used for ATMPs. Extra-funds for hospitals managing ATMPs were provided only in Germany and, as additional fund per episode, in France. The accreditation process of hospitals for ATMPs management was in most countries managed by the national authorities. As far as ATMPs pipeline is concerned, ATMPs in development are mostly targeting non-rare diseases. Conclusions Expert recommendations for ATMPs P&R were partially applied: the role of outcome-based MEAs has increased and the selection process of the centres authorized to use these treatments has been enhanced; additional funding for ATMPs management to accredited centres has not been completely considered and annuity payment and broader perspective in cost considerations are far from being put in place. These recommendations should be considered for future P&R negotiations to pursue rational resource allocation and deal with budget constraints.