Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,110 result(s) for "Abrasion"
Sort by:
Characteristics of pebble shape and the amount of pebble abrasion measured with a replica reproduced on a curling rink
The shape of pebbles on a curling rink was measured using a replica of the ice surface of the rink to understand the characteristics of pebbles after being in contact with stones. We focused on pebbles with flat tops for which the average shape was 3.81 mm in diameter at the lower base, 1.16 mm in diameter at the upper surface, 0.12 mm in maximum height, and 5.4° in contact angle. A scratch of about 1 µm in depth and 40 µm in width (traces of pebbles cut by a running band at the bottom of the stone) was observed on the upper surface. The pebbles were also found to have a moderate lower base diameter that preferentially contacted the nipper or stone due to its large maximum height value immediately after formation. Experiments to determine the amount of pebble abrasion associated with the passing of stones revealed that the average height of their upper surface decreased by 1 µm and the area of the upper surface increased by 0.21 mm for each stone passing as the stone cut the pebbles.
An ammonite trapped in Burmese amber
Amber is fossilized tree resin, and inclusions usually comprise terrestrial and, rarely, aquatic organisms. Marine fossils are extremely rare in Cretaceous and Cenozoic ambers. Here, we report a record of an ammonite with marine gastropods, intertidal isopods, and diverse terrestrial arthropods as syninclusions in mid-Cretaceous Burmese amber. We used X-ray–microcomputed tomography (CT) to obtain high-resolution 3D images of the ammonite, including its sutures, which are diagnostically important for ammonites. The ammonite is a juvenile Puzosia (Bhimaites) and provides supporting evidence for a Late Albian–Early Cenomanian age of the amber. There is a diverse assemblage (at least 40 individuals) of arthropods in this amber sample from both terrestrial and marine habitats, including Isopoda, Acari (mites), Araneae (spiders), Diplopoda (millipedes), and representatives of the insect orders Blattodea (cockroaches), Coleoptera (beetles), Diptera (true flies), and Hymenoptera (wasps). The incomplete preservation and lack of soft body of the ammonite and marine gastropods suggest that they were dead and underwent abrasion on the seashore before entombment. It is most likely that the resin fell to the beach from coastal trees, picking up terrestrial arthropods and beach shells and, exceptionally, surviving the high-energy beach environment to be preserved as amber. Our findings not only represent a record of an ammonite in amber but also provide insights into the taphonomy of amber and the paleoecology of Cretaceous amber forests.
Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction
Recent studies have shown that phytoliths are softer than dental enamel but still act as abrasive agents. Thus, phytolith content should be reflected in dental wear. Because native phytoliths show lower indentation hardness than phytoliths extracted by dry ashing, we propose that the hydration state of plant tissue will also affect dental abrasion. To assess this, we performed a controlled feeding experiment with 36 adult guinea pigs, fed exclusively with three different natural forages: lucerne, timothy grass, and bamboo with distinct phytolith/silica contents (lucerne < grass < bamboo). Each forage was fed in fresh or dried state for 3 weeks. We then performed 3D surface texture analysis (3DST) on the upper fourth premolar. Generally, enamel surface roughness increased with higher forage phytolith/silica content. Additionally, fresh and dry grass feeders displayed differences in wear patterns, with those of fresh grass feeders being similar to fresh and dry lucerne (phytolith-poor) feeders, supporting previous reports that “fresh grass grazers” show less abrasion than unspecialized grazers. Our results demonstrate that not only phytolith content but also properties such as water content can significantly affect plant abrasiveness, even to such an extent that wear patterns characteristic for dietary traits (browser–grazer differences) become indistinguishable.
Epidemiology, aetiology and prevention of tooth wear
Tooth wear is a commonly reported finding globally; however, many patients are unaware of having tooth wear. Identifying early signs of erosion, abrasion or attrition and determining the risk factors contributing to a patient's tooth wear may help to prevent further loss of enamel and dentine in the future. Appropriate prevention should be instigated, or appropriate referral made to other health professionals, when conditions such as gastroesophageal reflux or eating disorders are suspected. This paper presents the epidemiology and aetiological factors for tooth wear, as well as identifying the common clinical presentations of tooth wear. Patient perspectives on tooth wear and preventive techniques that can be utilised are also discussed.
The micro-CT evaluation of enamel-cement thickness, abrasion, and mineral density in teeth in the postmortem interval (PMI): new parameters for the determination of PMI
Objective The estimation of time of death or the determination of the postmortem interval (PMI) is one of the most important issues in forensic medicine and odontology. However, evaluation of bone and dental hard tissues in PMI could be challenging due to the lack of objective methods with high accuracy. In this respect, micro-CT analysis which has not been used for postmortem evaluation would be beneficial in evaluating hard tissues such as bones and teeth. Therefore, the aim of the present study was to determine the alterations in the hard dental tissue, mineral density of enamel, and the surface abrasion of hard dental tissues of rats in the PMI period with a relatively novel method, micro-CT. Methods The present study included 60 female Wistar rats which were divided into six study groups. The rats were sacrificed at the baseline and were left into nature putrefaction process. The study groups were created based on the PMI period as week—0, week—1, week—2, week—4, week—8, and week—12, which included 10 rats in each group. All hemi-mandibles were collected in the determined timelines and the micro-CT analysis was carried out on each group. Mineral density of enamel and the surface abrasion of hard dental tissues were determined. Results The enamel and cement thickness remained the same in the examined PMI periods. Mineral density of the enamel tissues were also similar until the 8th week but the decrease was significant at 12th week (2.313 gHAp cm 3 ). Surface abrasion of the dental tissues on weeks 4, 8, and 12 were 0.006, 0.024, and 0.024 mm, respectively. Conclusion The present study indicated that surface abrasion and enamel mineral density evaluation via micro-CT can be considered as objective and precise parameters in PMI evaluation in forensic medicine and odontology.
Abrasion Behavior of Steel-Fiber-Reinforced Concrete in Hydraulic Structures
This study investigated two types of abrasion resistance of steel–fiber-reinforced concrete in hydraulic structures, friction abrasion and impact abrasion using the ASTM C1138 underwater test and the water-borne sand test, respectively. Three water-to-cementitious-material ratios (0.50, 0.36, and 0.28), two impact angles (45° and 90°), plain concrete, and steel–fiber-reinforced concrete were employed. Test results showed that the abrasive action and principal resistance varied between the two test methods. The average impact abrasion rates (IARs) of concrete were approximately 8–17 times greater than the average friction abrasion rate (FARs). In general, the impact abrasion loss of the concrete surface impacted at a vertical angle was higher than that of impacted at a 45 degree angle. Moreover, the average FAR and IAR decreased when the concrete was reinforced with steel fibers. The steel fibers acted as shields to prevent the concrete material behind the fibers from abrasion, thus improving abrasion resistance. In both the underwater and waterborne sand flow methods, the resistance to abrasion of concrete without steel fibers increased as the water/cementitious material ratio (w/cm) decreased, and the concrete compressive strength also increased.
Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits
Dental microwear and 3D surface texture analyses are useful in reconstructing herbivore diets, with scratches usually interpreted as indicators of grass dominated diets and pits as indicators of browse. We conducted feeding experiments with four groups of rabbits (Oryctolagus cuniculus) each fed a different uniform, pelleted diet (lucerne, lucerne & oats, grass & oats, grass). The lowest silica content was measured in the lucerne and the highest in the grass diet. After 25 weeks of exposure to the diets, dental castings were made of the rabbit's lower molars. Occlusal surfaces were then investigated using dental microwear and 3D areal surface texture analysis. In terms of traditional microwear, we found our hypothesis supported, as the grass group showed a high proportion of (long) \"scratches\" and the lucerne group a high proportion of \"pits\". Regardless of the uniform diets, variability of microwear and surface textures was higher when silica content was low. A high variability in microwear and texture analysis thus need not represent dietary diversity, but can also be related to a uniform, low-abrasion diet. The uniformity or variability of microwear/texture analysis results thus might represent varying degrees of abrasion and attrition rather than a variety of diet items per se.
Study on the Micro-Abrasion Wear Behavior of PVD Hard Coating under Different SiC Abrasive Particles/Distilled Water Ratios
Microscale abrasion has been intensively used to study the wear behavior o several hard coatings, enabling the observation of different wear mechanisms. Recently, a study arguing whether the surface texture of the ball could influence the dynamics of abrasive particles throughout the contact was presented. In this work, the influence of the abrasive particles concentration able to change the texture of the ball was studied to understand its influence on the wear modes-rolling or grooving. Thus, tests were carried out using samples with a thin coating of TiN, deposited using the Physical Vapor Deposition (PVD) technique, and AISI 52100 steel balls etched over 60 s to induce a change in their texture and roughness were used. Three abrasive slurries were prepared with black silicon carbide (SiC) particles (average particle size of 4 μm) with different concentrations, 0.25, 0.35, and 0.45 g/cm . The rotation speed used in the tests was 80 rpm and the normal loads applied in the study were 0.2 N and 0.5 N, and 1 N. After the wear tests, the coated samples and tracks on the surface of the balls were observed by SEM and 3D microscopy to understand the abrasive particle dynamics, evaluating the wear mode transition as well as the function of both applied load and slurry concentration. The tracks in the balls showed particles embedded on their surface. A lower concentration of abrasion was conducted to higher specific wear rate. Moreover, a predominant two-body wear mechanism was induced when the abrasive concentration was increased. There was an increase in the roughness of the scar and the surface of the balls with an increase in the abrasive particles' concentration.
Study on the Wear Modes of PVD Films Using Different Concentrations of Al2O3 Abrasive Particles and Textured Rotating Balls
Abrasive wear is a wear mechanism that results in a loss of material from the interaction of a surface with hard particles. This type of wear is frequently found in the surface of machining tools. Microscale abrasion equipment is often used to characterize the resistance to abrasive wear of a surface. The different parameters able to control micro-abrasion wear tests, such as ball rotation, sliding distance between ball and surface sample, abrasive slurry concentration, normal load acting on the sample, and abrasive flow rate over the sample, have been widely studied. The combination of different variables, including sliding distance, concentration of abrasive particles, their hardness, and size of abrasive particles, promotes the transition between two-body, three-body, or mixed abrasive wear modes. However, the influence of the ball surface on the dragging of abrasive particles, which is reflected in the wear modes, is still poorly studied. One of the variables possible to control and less studied is the influence of the ball surface texture on the dragging of abrasive particles in micro-abrasion wear tests. This work intends to correlate the effect of different testing times (500, 1000, and 1500 cycles) and different concentrations of 3 μm Al2O3 abrasive slurry (25, 35, and 45 g/100 mL) on the micro abrasion resistance of a TiN thin coating film, using balls of AISI 52100 steel whose texture and roughness were prepared by 60 s chemical etching. The rotation speed of each test was 80 rpm, applying a normal load of 2 N. Subsequently, the craters were carefully analyzed using SEM to evaluate the transition of the wear mode as a function of the applied load, the abrasive particle concentration, and the sliding distance. The textured ball tracks were observed via SEM to assess the particle dynamics. The results showed that, contrarily to what is reported in the literature regarding wear modes where rolling is promoted with increasing abrasive concentration, in this work grooving took place instead. This is a result of the rough balls use in the experiments which, due to the embedment of abrasive particles in the ball grooves, promotes the abrasion mechanism. The higher the abrasive concentration, the higher the grooving mechanism, since more particles are available to scratch the surface.