Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
743 result(s) for "Absorptance"
Sort by:
Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms
Red and blue light are traditionally believed to have a higher quantum yield of CO 2 assimilation ( QY , moles of CO 2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density ( PPFD ), green light may achieve higher QY and net CO 2 assimilation rate ( A n ) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf A n of “Green Tower” lettuce ( Lactuca sativa ) under red, blue, and green light, and combinations of those at PPFD s from 30 to 1,300 μmol⋅m –2 ⋅s –1 . The electron transport rates ( J ) and the maximum Rubisco carboxylation rate ( V c,max ) at low (200 μmol⋅m –2 ⋅s –1 ) and high PPFD (1,000 μmol⋅m –2 ⋅s –1 ) were estimated from photosynthetic CO 2 response curves. Both QY m,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QY m,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QY m,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD , the QY inc [gross CO 2 assimilation ( A g )/incident PPFD ] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. V c,max may not limit photosynthesis at a PPFD of 200 μmol m –2 s –1 and was largely unaffected by light spectrum at 1,000 μmol⋅m –2 ⋅s –1 . A g and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J . No interaction between the three colors of light was detected. In summary, at low PPFD , green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD , QY inc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.
Thermal consequences of colour and near-infrared reflectance
The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700–2500 nm) as visible (300–700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.
Metasurface Broadband Solar Absorber
We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.
Characterization of thermo-optical properties of Power and Thermal Functional Surfaces Exposed to Lunar Dust Simulants
Measurements were conducted for a large set of samples and two lunar dust simulant (LDS) for estimating the impact of LDS contamination on thermo-optical properties of material surfaces. A systematic approach was used to get reproducible dust coverage rates on samples. The results indicate that the Rule-of-mixture approach is a conservative approximation for the change in solar absorptivity but is valid for predicting IR emissivity. For the coverglasses the reduction of transmissivity over dust coverage level was established. Finally, metrics could be proposed to link dust coverage to degradation of solar absorptance and IR emissivity for all tested material families.
In3SbTe2 as a programmable nanophotonics material platform for the infrared
The high dielectric optical contrast between the amorphous and crystalline structural phases of non-volatile phase-change materials (PCMs) provides a promising route towards tuneable nanophotonic devices. Here, we employ the next-generation PCM In 3 SbTe 2 (IST) whose optical properties change from dielectric to metallic upon crystallization in the whole infrared spectral range. This distinguishes IST as a switchable infrared plasmonic PCM and enables a programmable nanophotonics material platform. We show how resonant metallic nanostructures can be directly written, modified and erased on and below the meta-atom level in an IST thin film by a pulsed switching laser, facilitating direct laser writing lithography without need for cumbersome multi-step nanofabrication. With this technology, we demonstrate large resonance shifts of nanoantennas of more than 4 µm, a tuneable mid-infrared absorber with nearly 90% absorptance as well as screening and nanoscale “soldering” of metallic nanoantennas. Our concepts can empower improved designs of programmable nanophotonic devices for telecommunications, (bio)sensing and infrared optics, e.g. programmable infrared detectors, emitters and reconfigurable holograms. Here, the authors introduce In3SbTe2 (IST) as a programmable material platform for plasmonics and nanophotonics in the infrared. They demonstrate direct optical writing, modifying and erasing of metallic crystalline IST nanoantennas, tuning their resonances, as well as nanoscale screening and soldering.
Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration
While the behaviour of plasmonic solid thin films in the Kretschmann (also known as Attenuated Total Reflection, ATR) configuration is well-understood, the use of discrete nanoparticle arrays in this optical configuration is not thoroughly explored. It is important to do so, since close packed plasmonic nanoparticle arrays exhibit exceptionally strong light-matter interactions by plasmonic coupling. The present work elucidates the optical properties of plasmonic Au and Ag nanoparticle arrays in both the direct normal incidence and Kretschmann configuration by numerical models, that are validated experimentally. First, hexagonal close packed Au and Ag nanoparticle films/arrays are obtained by air–liquid interfacial assembly. The numerical models for the rigorous solution of the Maxwell’s equations are validated using experimental optical spectra of these films before systematically investigating various parameters. The individual far-field/near-field optical properties, as well as the plasmon relaxation mechanism of the nanoparticles, vary strongly as the packing density of the array increases. In the Kretschmann configuration, the evanescent fields arising from p - and s -polarized (or TM and TE polarized) incidence have different directional components. The local evanescent field intensity and direction depends on the polarization, angle of incidence and the wavelength of incidence. These factors in the Kretschmann configuration give rise to interesting far-field as well as near-field optical properties. Overall, it is shown that plasmonic nanoparticle arrays in the Kretschmann configuration facilitate strong broadband absorptance without transmission losses, and strong near-field enhancement. The results reported herein elucidate the optical properties of self-assembled nanoparticle films, pinpointing the ideal conditions under which the normal and the Kretschmann configuration can be exploited in multiple light-driven applications.
A Metamaterials-Based Absorber Used for Switch Applications with Dynamically Variable Bandwidth in Terahertz Regime
A broadband absorber based on metamaterials of graphene and vanadium dioxide (VO2) is proposed and investigated in the terahertz (THz) regime, which can be used for switch applications with a dynamically variable bandwidth by electrically and thermally controlling the Fermi energy level of graphene and the conductivity of VO2, respectively. The proposed absorber turns ‘on’ from 1.5 to 5.4 THz, with the modulation depth reaching 97.1% and the absorptance exceeding 90% when the Fermi energy levels of graphene are set as 0.7 eV, and VO2 is in the metallic phase. On the contrary, the absorptance is close to zero and the absorber turns ‘off’ with the Fermi energy level setting at 0 eV and VO2 in the insulating phase. Furthermore, other four broadband absorption modes can be achieved utilizing the active materials graphene and VO2. The proposed terahertz absorber may benefit the areas of broadband switch, cloaking objects, THz communications and other applications.
Process characterization and analysis of ceramic powder bed fusion
Powder bed fusion (PBF) of ceramics is often limited because of the low absorptance of ceramic powders and lack of process understanding. These challenges have been addressed through a co-development of customized ceramic powders and laser process capabilities. The starting powder is made of a mix of pure alumina powder and alumina granules, to which a metal oxide dopant is added to increase absorptance. The performance of different granules and process parameters depends on a large number of influencing factors. In this study, two methods for characterizing and analyzing the PBF process are presented and used to assess which dopant is the most suitable for the process. The first method allows one to analyze the absorptance of the laser during the melting of a single track using an integrating sphere. The second one relies on in-situ video imaging using a high-speed camera and an external laser illumination. The absorption behavior of the laser power during the melting of both single tracks and full layers is proven to be a non-linear and extremely dynamic process. While for a single track, the manganese oxide doped powder delivers higher and more stable absorptance. When a full layer is analyzed, iron oxide-doped powder is leading to higher absorptance and a larger melt pool. Both dopants allow the generation of a stable melt-pool, which would be impossible with granules made of pure alumina. In addition, the present study sheds light on several phenomena related to powder and melt-pool dynamics, such as the change of melt-pool shape and dimension over time and powder denudation effects.
Dumbbell shaped structure loaded modified circular ring resonator based perfect metamaterial absorber for S, X and Ku band microwave sensing applications
In this paper, a new metamaterial absorber (MMA) is presented that exhibits peak absorptions at 3.26 GHz, 11.6 GHz, and 17.13 GHz within S, X, and Ku bands. The unit cell of the proposed MMA is constructed on an FR4 substrate having an electrical dimension of 0.144λ × 0.144λ, where wavelength, λ is calculated at the lowest absorption frequency. The unique structural design of the unit cell consists of two concentric copper rings with which dumbbell-shaped structures are attached. The rotating symmetrical structural design of this MMA provides around 93.8%, 96.47%, and 99.95% peak absorptance in the mentioned frequencies, which is invariable with the change of incident angle as well as polarization angle. The metamaterial properties of the proposed absorber are studied along with the surface current analysis. The MMA shows single negative behaviour and it also exhibits high-quality factors (Q factor) of 21.73, 41.42, and 51.90 at maximum absorptance frequencies. The MMA is analysed by it's equivalent circuit to understand the resonance phenomenon, which is verified through simulation in Advanced Design Systems (ADS) software. The testing is done on the developed prototype of the proposed MMA. Measurement results are in close proximity to the simulation results. Due to its high Q factor, high EMR, and insensitivity to polarization and angle of incidence, it can be utilized as a part of miniaturized microwave device. In addition, the proposed MMA can exhibit high sensing performance and flexibility to differentiate different oils in S, X, and Ku bands.
Unprecedented mechanical wave energy absorption observed in multifunctional bioinspired architected metamaterials
In practical engineering, noise and impact hazards are pervasive, indicating the pressing demand for materials that can absorb both sound and stress wave energy simultaneously. However, the rational design of such multifunctional materials remains a challenge. Herein, inspired by cuttlebone, we present bioinspired architected metamaterials with unprecedented sound-absorbing and mechanical properties engineered via a weakly-coupled design. The acoustic elements feature heterogeneous multilayered resonators, whereas the mechanical responses are based on asymmetric cambered cell walls. These metamaterials experimentally demonstrated an average absorption coefficient of 0.80 from 1.0 to 6.0 kHz, with 77% of the data points exceeding the desired 0.75 threshold, all with a compact 21 mm thickness. An absorptance-thickness map is devised for assessing the sound-absorption efficiency. The high-fidelity microstructure-based model reveals the air friction damping mechanism, with broadband behavior attributed to multimodal hybrid resonance. Empowered by the cambered design of cell walls, metamaterials shift catastrophic failure toward a progressive deformation mode characterized by stable stress plateaus and ultrahigh specific energy absorption of 50.7 J/g—a 558.4% increase over the straight-wall design. After the deformation mechanisms are elucidated, a comprehensive research framework for burgeoning acousto-mechanical metamaterials is proposed. Overall, our study broadens the horizon for multifunctional material design.Noise and impact hazards are pervasive in engineering, necessitating materials capable of absorbing both sound and stress wave energy. Here, we present bioinspired metamaterials with exceptional sound-absorbing and mechanical properties using a weakly-coupled design strategy. These materials incorporate multi-layered resonators for superior acoustic performance and cambered cell walls for enhanced structural strength. They achieve an average absorption coefficient of 0.80 across the 1.0 to 6.0 kHz range, all within a sleek 21 mm thickness. Furthermore, the design transitions failure modes from catastrophic to progressive, resulting in a remarkable 558.4% increase in energy absorption compared to conventional designs.