Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
362 result(s) for "Abyssal plains"
Sort by:
Megafaunal Ecology of the Western Clarion Clipperton Zone
The Clarion Clipperton Zone (CCZ) is a vast area of the central Pacific Ocean where the abyssal seabed is a focus for future polymetallic nodule mining. Broad-scale environmental gradients occur east-to-west across the CCZ seabed, including organic matter supply and nodule abundance, factors that influence benthic faunal community structure and function. A network of protected areas across the CCZ, called Areas of Particular Environmental Interest (APEIs), has been designated to cover this variation. Most previous studies of the benthic environment and megafaunal communities have focussed on the eastern CCZ, leaving the impact of these large-scale gradients unexamined and the network design untested. Seamounts are a further source of heterogeneity in the region. We examined the benthic megafaunal ecology of three APEIs in the western CCZ, spanning a range of environmental conditions. We used a combination of seabed photography and direct sampling to assess the environment and megafauna on the soft sediment habitats on the abyssal plain in three APEIs, and seamounts in two of those APEIs. We found that environmental conditions on abyssal plains differed between the three APEIs in terms of water depth, nodule abundance and coverage, sediment particle size distribution, and estimated organic matter flux. Megafauna were low density and high diversity, with few common morphotypes between sites and many morphotypes being observed only once. Xenophyophores dominated the assemblages. The density and diversity of invertebrates were greater at the sites with lower organic matter inputs and greater nodule abundance. Seamounts in the same APEIs were nodule-free and had coarser sediments than on the plain. Invertebrate megafaunal diversity was lower on the seamounts than on the plains, and most morphotypes recorded on the seamounts were only found on seamounts. Low morphotype overlap also suggests little connectivity between APEIs, and between seamounts and adjacent abyssal plains. Our results provide the first evaluation of the seabed habitats and megafaunal ecology in the western CCZ, highlighting environmental gradients that influence benthic communities, and are important for evaluating the design of the network of protected areas.
Geostatistical Seismic Inversion for Temperature and Salinity in the Madeira Abyssal Plain
A two-dimensional multichannel seismic reflection profile acquired in the Madeira Abyssal Plain during June 2016 was used in a modeling workflow comprising seismic oceanography processing, geostatistical inversion and Bayesian classification to predict the probability of occurrence of distinct water masses. The seismic section was processed to image in detail the fine scale structure of the water column using seismic oceanography. The processing sequence was developed to preserve, as much as possible, the relative seismic amplitudes of the data and enhance the shallow structure of the water column by effectively suppressing the direct arrival. The migrated seismic oceanography section shows an eddy at the expected Mediterranean Outflow Water depths, steeply dipping reflectors, which indicate the possible presence of frontal activity or secondary dipping eddy structures, and strong horizontal reflections between intermediate water masses suggestive of double diffuse processes. We then developed and applied an iterative geostatistical seismic oceanography inversion methodology to predict the spatial distribution of temperature and salinity. Due to the lack of contemporaneous direct measurements of temperature and salinity we used a global ocean model as spatial constraint during the inversion and nearby contemporaneous ARGO data to infer the expected statistical properties of both model parameters. After the inversion, Bayesian classification was applied to all temperature and salinity models inverted during the last iteration to predict the spatial distribution of three distinct water masses. A preliminary interpretation of these probabilistic models agrees with the expected ocean dynamics of the region.
Glacial bedforms in the Northwind Abyssal Plain, Chukchi Borderland
A series of sub-parallel linear glacial scours are identified on the crest of the Baoshi Seamount in the Northwind Abyssal Plain by compiling new multibeam data acquired during the 9th Chinese Arctic Research Expedition (CHINARE-Arc9) in 2018 and previously published data. The new data reveal scours that developed at water depths of 850–1 030 m with an orientation of about 75°/255°. The maximum water depth occurs in the southernmost scour and is deeper than that from previous investigations, which showed a maximum scouring depth of about 900 m on the seamount. The topographic and geomorphological characteristics suggest that these scours resulted from erosion by the ice shelf extending from the Chukchi margin and/or Laurentide Ice Sheet that grounded on the crest of the seamount and moved in a NE-SW direction. Other possibilities of their genesis include armadas of large icebergs/multi-keel icebergs calved from the Chukchi Shelf or the Laurentide Ice Sheet. The new data provide new constraints for assessing the extent and volume of the ice sheet in the Chukchi area during glacial maxima.
Major fine-scale spatial heterogeneity in accumulation of gelatinous carbon fluxes on the deep seabed
Abyssal plain communities rely on the overlying water column for a settling flux of organic matter. The origin and rate of this flux as well as the controls on its fine-scale spatial distribution following seafloor settlement are largely unquantified. This is particularly true across regions where anthropogenically-induced seafloor disturbance has occurred. Here, we observed, quantified and mapped a mass deposition event of gelatinous zooplankton carcasses (pyrosomes) in July-September 2015 across one such physically disturbed region in the Peru Basin polymetallic nodule province (4150 m). Seafloor in this area was disturbed with a plough harrow in 1989 (as part of the DISCOL experiment) causing troughs in the sediment. Other parts were disturbed with an epibenthic sled (EBS) during a cruise in 2015 resulting in steep-walled, U-shaped troughs. We investigated two hypotheses: a) gelatinous food falls contribute significantly to the abyssal plain carbon pump and b) physical seafloor disturbance influences abyssal distribution of organic matter. We combined optical and bathymetric seafloor observations, to analyze pyrosome distribution on seabeds with different levels of disturbance. 2954 pyrosome colonies and associated taxa were detected in > 14,000 seafloor images. The mean regional carbon (C) deposition associated with pyrosome carcasses was significant compared to the flux of particulate organic C (182 to 1543%), and the total respired benthic C flux in the DISCOL Experimental Area (39 to 184%). EBS-disturbed seafloor tracks contained 72 times more pyrosome-associated C than an undisturbed reference site, and up to 4 times more than an area disturbed in 1989. Deposited pyrosomes collected had a higher proportion of labile fatty acids compared to the sediment. We document the temporal and spatial extent of an abyssal food fall event with unprecedented detail and show that physical seafloor disturbance results in the accumulation of detrital material. Such accumulation may reduce oxygen availability and alter benthic community structure. Understanding both the relevance of large food falls and the fine scale topography of the seafloor, is necessary for impact assessment of technologies altering seafloor integrity (e.g. as a result of bottom-trawling or deep seabed mining) and may improve their management on a global scale.
Volume and recurrence of submarine‐fan‐building turbidity currents
Submarine fans are archives of Earth‐surface processes and change, recording information about the turbidity currents that construct and sculpt them. The volume and recurrence of turbidity currents are of great interest for geohazard assessment, source‐to‐sink modelling, and hydrocarbon reservoir characterization. Yet, such dynamics are poorly constrained. This study integrates data from four Quaternary submarine fans to reconstruct the volume and recurrence of the formative turbidity currents. Calculated event volumes vary over four orders of magnitude (105 to 109 m3), whereas recurrence intervals vary less, from 50 to 650 years. The calculated turbidity‐current‐event volume magnitudes appear to be related to slope position and basin confinement. Intraslope‐fan deposits have small event volumes (ca 106 m3) while ponded‐fan deposits have very large event volumes (108 to 109 m3). Deposits in non‐ponded, base‐of‐slope environments have intermediate values (107 to 108 m3). Sediment bypass in intraslope settings and flow trapping in ponded basins likely account for these differences. There seems to be no clear relationship between event recurrence and basin confinement. Weak scaling exists between event volume and source‐area characteristics, but sediment storage in fluvial and/or intraslope transfer zones likely complicates these relationships. The methodology and results presented here are also applied to reconstruct the time of deposition of ancient submarine‐fan deposits of the Tanqua Karoo basin, South Africa. The volume and recurrence of submarine‐fan‐building turbidity currents form intermediate values between values measured in submarine canyons and channels (<105 m3 and <101 years) and on abyssal plains (>108 m3 and >103 years), indicating that small, frequent flows originating in submarine canyons often die out prior to reaching the fan, while rare and very large flows mostly bypass the fan and deposit sediment on the abyssal plain. This partitioning of flow volume and recurrence along the submarine sediment‐routing system provides valuable insights for better constraining geohazards, hydrocarbon resources and the completeness of the stratigraphic record. We provide a methodology to estimate the volume and recurrence of turbidity currents that deliver sediment to submarine fans. We apply this method to four modern fan systems from around the world and also to ancient fan deposits. Finally, we compare these event volume and frequency values to those derived from submarine canyons and abyssal plains, providing valuable data for geohazard assessment.
Distinct BSRs and their implications for natural gas hydrate formation and distribution at the submarine Makran accretionary zone
To investigate the nature of gas hydrates in the Makran area, new high-resolution geophysical data were acquired between 2018–2019. The data collected comprise multibeam and two-dimensional multi-channel seismic reflection data. The multibeam bathymetry data show East-North-East (ENE) ridges, piggy-back basins, canyon and channel systems, and the morphology of the abyssal plain. Continuous and discontinuous bottom simulating reflectors (BSRs) occur in the piggy-back basins on most of the seismic profiles available. The BSRs cut the dipping layers with strong amplitude and reversed polarity. Discontinuous BSRs indicate a transition along a dipping high-permeable sand layers from gas-rich segment to the gas hydrate-bearing segment and suggest alternating sediments of fine and relatively coarse grain size. Double BSRs are highly dynamic and attributed to slumps occurring in the study area. The BSRs induced by slumps are located both at deep and shallow depths, responding to the temperature or pressure variation. For the first time, BSRs are observed in the abyssal plain of the Makran area, being associated with anticline structures, which do not show large spatial continuity and are strongly conditioned by structural conditions such as anticlines and fluid migration pathways, including deep fault, gas chimney, and high-permeable sedimentary layer. Our results may help to assess the gas hydrate potential within the piggy-back basins and to determine the most promising target areas. Moreover, results about the abyssal plain BSR may help to locate hydrocarbon reservoirs in the deep ocean.
Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin
Alternative reconstructions of the Jurassic northern extent of Greater India differ by up to several thousand kilometers. We present a new model that is constrained by revised seafloor spreading anomalies, fracture zones and crustal ages based on drillsites/dredges from all the abyssal plains along the West Australian margin and the Wharton Basin, where an unexpected sliver of Jurassic seafloor (153 Ma) has been found embedded in Cretaceous (95 My old) seafloor. Based on fracture zone trajectories, this NeoTethyan sliver must have originally formed along a western extension of the spreading center that formed the Argo Abyssal Plain, separating a western extension of West Argoland/West Burma from Greater India as a ribbon terrane. The NeoTethyan sliver, Zenith and Wallaby plateaus moved as part of Greater India until westward ridge jumps isolated them. Following another spreading reorganization, the Jurassic crust resumed migrating with Greater India until it was re‐attached to the Australian plate ∼95 Ma. The new Wharton Basin data and kinematic model place strong constraints on the disputed northern Jurassic extent of Greater India. Late Jurassic seafloor spreading must have reached south to the Cuvier Abyssal Plain on the West Australian margin, connected to a spreading ridge wrapping around northern Greater India, but this Jurassic crust is no longer preserved there, having been entirely transferred to the conjugate plate by ridge propagations. This discovery constrains the major portion of Greater India to have been located south of the large‐offset Wallaby‐Zenith Fracture Zone, excluding much larger previously proposed shapes of Greater India. Key Points To constrain the extent of Greater India using evidence offshore West Australia To develop a model that incorporates the new Jurassic data off NW Australia To link the Jurassic and Cretaceous spreading corridors of NW Australia
Deep Ocean Steric Sea Level Change in the Subtropical Northwest Atlantic Ocean
The non‐closure of the global sea level budget, detected since 2017, stimulates the need to better understand limitations of satellite altimetry and gravimetry measurements, and breakdown in situ measurement contributions and gaps. Here, temperature and salinity profiles collected in the subtropical Northwest Atlantic Ocean between 2017 and 2022 by Deep Argo floats are used to partition steric sea level variability into contributions as a function of depth. Interannual steric sea level variability near the surface is of the same order of magnitude over the western boundary and abyssal plain, but fluctuations below 2,000 m over the western boundary are seven times larger and seem affected by local wind forcing. This analysis demonstrates how Deep Argo enables new evaluation of regional sea level budgets and comparison to geodetic products. Differences between float measurements and GLORYS12 highlight the need for more deep‐ocean measurements that can be assimilated in the development of ocean reanalysis products.
Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces
The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.
Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages
Marine sediments represent a vast habitat for complex microbiomes. Among these, ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are one of the most common, yet little explored, inhabitants, which seem extraordinarily well adapted to the harsh conditions of the subsurface biosphere. We present 11 metagenome-assembled genomes of the most abundant AOA clades from sediment cores obtained from the Atlantic Mid-Ocean ridge flanks and Pacific abyssal plains. Their phylogenomic placement reveals three independently evolved clades within the order Nitrosopumilales, of which no cultured representative is known yet. In addition to the gene sets for ammonia oxidation and carbon fixation known from other AOA, all genomes encode an extended capacity for the conversion of fermentation products that can be channeled into the central carbon metabolism, as well as uptake of amino acids probably for protein maintenance or as an ammonia source. Two lineages encode an additional (V-type) ATPase and a large repertoire of DNA repair systems that may allow to overcome the challenges of high hydrostatic pressure. We suggest that the adaptive radiation of AOA into marine sediments occurred more than once in evolution and resulted in three distinct lineages with particular adaptations to this extremely energy-limiting and high-pressure environment.