Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
671 result(s) for "Acacia - chemistry"
Sort by:
Indigenous knowledge and quantitative ethnobotany of the Tanawal area, Lesser Western Himalayas, Pakistan
Ethnobotanical field surveys were carried out in the Tanawal area of the Lesser Himalayan Region, Khyber Pakhtunkhawa, Province from April 2016 to October 2017. The area is located between 34.36 (34° 21’ 30 N) latitude and 73.07 (73° 4’ 0 E) longitude with an average elevation of 1374 meters above sea level. Ethnomedicinal data were collected through Participatory Rural Appraisal (PRA), and participants were selected through the snow-boll technique. Semi-structured, in-depth and open-ended interviews were conducted. The data were quantitatively evaluated using ethnomedicinal indices i.e. Relative frequency of citation (RFCs), Fidelity level (FL), and Use Value (UV). The ethnobotanical data were also comparatively analyzed through the Jaccard Index (JI). The study yielded 66 medicinal plants in 62 genera and 43 families. Asteraceae and Solanaceae were the most important families with five medicinal taxa each. Regarding medicinal plant part utilization, leaves (43.28%) were used predominantly, followed by whole plant (14.92%) and fruits (14.92%). Decoction was the main drug formulation applied to 21 species (31.15%) and the oral route was most common (56.1%) while 31.2% of medicinal plants were used for both oral and topical applications. Fifty health disorders were recorded and grouped in 15 categories. Maximum species were used to treat gastrointestinal disorders i.e. 13 species, dermal problems (12 species), and respiratory tract ailments (9). The calculated RFCs ranged between 81 to 31. The most important medicinal plants were Acacia modesta , Citrullus vulgaris , Tamarindus indica , and Momordica charantia with an RGFC of 81 each. The UV ranged between 0.58 and 3.6. Medicinal taxa with the highest UV were Dioscorea deltoidea (3.6), Withania coagulans (3.3), Momordica charantia (3.5), Silybum marianum and Pyrus pashia (3.2). FL values showed that 28 (41.79%) species had a FL value below 50 (74.62%) while 39 (58.20%) had higher FL values. Momordica charantia , Tamarindus indica , Acacia modesta and Citrullus vulgaris were 95.2 each. The Jaccard Index (JI) values ranged from16.77 to 0.98. The current study also reported 16 medicinal plants, commonly used around the globe, have been rarely documented for their medicinal values in the local ethnomedicinal literature i.e. Althaea officinalis , Plantanus orientalis , Jasminum sombac , Maytenus royleana , Cucurbita maxima , Phyllanthus emblica , Citrullus vulgaris . Polygonatum verticilliatum , Caseria tomentosa , Cistanche tubulosa , Bambusa arundinacea , Schinus molle , Tamarindus indica , Pongamia pinnata , Citrus limon and Catharanthus roseus . However, 48 medicinal plants had been reported in the literature but the current study reported their novel medicinal uses. Important taxa should be established in botanical gardens for in-situ conservation, chemical investigation and sustainable utilization. It would also be effective to improve the livelihoods of the local population.
A Review on the Main Phytoconstituents, Traditional Uses, Inventions, and Patent Literature of Gum Arabic Emphasizing Acacia seyal
Acacia seyal is an important source of gum Arabic. The availability, traditional, medicinal, pharmaceutical, nutritional, and cosmetic applications of gum acacia have pronounced its high economic value and attracted global attention. In addition to summarizing the inventions/patents applications related to gum A. seyal, the present review highlights recent updates regarding its phytoconstituents. Traditional, cosmetic, pharmaceutical, and medicinal uses with the possible mechanism of actions have been also reviewed. The patent search revealed the identification of 30 patents/patent applications of A. seyal. The first patent related to A. seyal was published in 1892, which was related to its use in the prophylaxis/treatment of kidney and bladder affections. The use of A. seyal to treat cancer and osteoporosis has also been patented. Some inventions provided compositions and formulations containing A. seyal or its ingredients for pharmaceutical and medical applications. The inventions related to agricultural applications, food industry, cosmetics, quality control of gum Arabic, and isolation of some chemical constituents (L-rhamnose and arabinose) from A. seyal have also been summarized. The identification of only 30 patents/patent applications from 1892 to 15 November 2021 indicates a steadily growing interest and encourages developing more inventions related to A. seyal. The authors recommend exploring these opportunities for the benefit of society.
Liming potential and characteristics of biochar produced from woody and non-woody biomass at different pyrolysis temperatures
Large amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.
Tannins from Acacia mearnsii De Wild. Bark: Tannin Determination and Biological Activities
The bark of Acacia mearnsii De Wild. (black wattle) contains significant amounts of water-soluble components acalled “wattle tannin”. Following the discovery of its strong antioxidant activity, a wattle tannin dietary supplement has been developed and as part of developing new dietary supplements, a literature search was conducted using the SciFinder data base for “Acacia species and their biological activities”. An analysis of the references found indicated that the name of Acacia nilotica had been changed to Vachellia nilotica, even though the name of the genus Acacia originated from its original name. This review briefly describes why and how the name of A. nilotica changed. Tannin has been analyzed using the Stiasny method when the tannin is used to make adhesives and the hide-powder method is used when the tannin is to be used for leather tanning. A simple UV method is also able to be used to estimate the values for both adhesives and leather tanning applications. The tannin content in bark can also be estimated using NIR and NMR. Tannin content estimations using pyrolysis/GC, electrospray mass spectrometry and quantitative 31P-NMR analyses have also been described. Tannins consists mostly of polyflavanoids and all the compounds isolated have been updated. Antioxidant activities of the tannin relating to anti-tumor properties, the viability of human neuroblastoma SH-SY5Y cells and also anti-hypertensive effects have been studied. The antioxidant activity of proanthocyanidins was found to be higher than that of flavan-3-ol monomers. A total of fourteen papers and two patents reported the antimicrobial activities of wattle tannin. Bacteria were more susceptible to the tannins than the fungal strains tested. Several bacteria were inhibited by the extract from A. mearnsii bark. The growth inhibition mechanisms of E. coli were investigated. An interaction between extracts from A. mearnsii bark and antibiotics has also been studied. The extracts from A. mearnsii bark inhibit the growth of cyanobacteria. Wattle tannin has the ability to inactivate α-amylase, lipase and glucosidase. In vivo experiments on anti-obesity and anti-diabetes were also reported. Several patents relating to these enzymes for anti-diabetes and anti-obesity are in the literature. In addition, studies on Acacia bark extract regarding its antitermite activities, inhibition of itching in atopic dermatitis and anti-inflammatory effects have also been reported. The growth of bacteria was inhibited by the extract from A. mearnsii bark, and typical intestinal bacteria such as E. coli, K. pneumoniae, P. vulgaris and S. marcescenes was also inhibited in vitro by extracts. Based on these results, the Acacia bark extract may inhibit not only the growth of these typical intestinal bacteria but also the growth of other types of intestinal bacteria such as Clostridium and Bacteroides, a so-called “bad bacteria”. If the tannin extract from A. mearnsii bark inhibits growth of these “bad bacteria” in vivo evaluation, the extracts might be usable as a new dietary supplement, which could control the human intestinal microbiome to keep the body healthy.
Improved Tolerance of Acacia nilotica to Salt Stress by Arbuscular Mycorrhiza, Glomus fasciculatum May Be Partly Related to Elevated K/Na Ratios in Root and Shoot Tissues
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m⁻¹). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m⁻¹ salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m⁻¹). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m⁻¹), which lowered as salinity levels increased (6.5, 9.5 dS m⁻¹), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.
Antibacterial Activities and Possible Modes of Action of Acacia nilotica (L.) Del. against Multidrug-Resistant Escherichia coli and Salmonella
Medicinal plants are frequently used for the treatment of various infectious diseases. The objective of this study was to evaluate the antibacterial activity and mode of action of Acacia nilotica and the antibiogram patterns of foodborne and clinical strains of Escherichia coli and Salmonella. The mechanism of action of acacia extracts against E. coli and Salmonella was elucidated by observing morphological damages including cell integrity and cell membrane permeability, as well as changes in cell structures and growth patterns in kill-time experiments. The clinical isolates of E. coli and Salmonella were found resistant to more of the tested antibiotics, compared to food isolates. Minimum inhibitory concentration and minimum bactericidal concentration of acacia leaf extracts were in the ranges of 1.56–3.12 mg/mL and 3.12–6.25 mg/mL, respectively, whereas pods and bark extracts showed somewhat higher values of 3.12–6.25 mg/mL and 6.25–12.5 mg/mL, respectively, against all tested pathogens. The release of electrolytes and essential cellular constituents (proteins and nucleic acids) indicated that acacia extracts damaged the cellular membrane of the pathogens. These changes corresponded to simultaneous reduction in the growth of viable bacteria. This study indicates that A. nilotica can be a potential source of new antimicrobials, effective against antibiotic-resistant strains of pathogens.
Enhancing Cellulose and Lignin Fractionation from Acacia Wood: Optimized Parameters Using a Deep Eutectic Solvent System and Solvent Recovery
Cellulose and lignin, sourced from biomass, hold potential for innovative bioprocesses and biomaterials. However, traditional fractionation and purification methods often rely on harmful chemicals and high temperatures, making these processes both hazardous and costly. This study introduces a sustainable approach for fractionating acacia wood, focusing on both cellulose and lignin extraction using a deep eutectic solvent (DES) composed of choline chloride (ChCl) and levulinic acid (LA). A design of experiment was employed for the optimization of the most relevant fractionation parameters: time and temperature. In the case of the lignin, both parameters were found to be significant variables in the fractionation process (p-values of 0.0128 and 0.0319 for time and temperature, respectively), with a positive influence. Likewise, in the cellulose case, time and temperature also demonstrated a positive effect, with p-values of 0.0103 and 0.028, respectively. An optimization study was finally conducted to determine the maximum fractionation yield of lignin and cellulose. The optimized conditions were found to be 15% (w/v) of the wood sample in 1:3 ChCl:LA under a treatment temperature of 160 °C for 8 h. The developed method was validated through repeatability and intermediate precision studies, which yielded a coefficient of variation lower than 5%. The recovery and reuse of DES were successfully evaluated, revealing remarkable fractionation yields even after five cycles. This work demonstrates the feasibility of selectively extracting lignin and cellulose from woody biomass using a sustainable solvent, thus paving the way for valorization of invasive species biomass.
Polyphenolics with Strong Antioxidant Activity from Acacia nilotica Ameliorate Some Biochemical Signs of Arsenic-Induced Neurotoxicity and Oxidative Stress in Mice
Neurotoxicity is a serious health problem of patients chronically exposed to arsenic. There is no specific treatment of this problem. Oxidative stress has been implicated in the pathological process of neurotoxicity. Polyphenolics have proven antioxidant activity, thereby offering protection against oxidative stress. In this study, we have isolated the polyphenolics from Acacia nilotica and investigated its effect against arsenic-induced neurotoxicity and oxidative stress in mice. Acacia nilotica polyphenolics prepared from column chromatography of the crude methanol extract using diaion resin contained a phenolic content of 452.185 ± 7.879 mg gallic acid equivalent/gm of sample and flavonoid content of 200.075 ± 0.755 mg catechin equivalent/gm of sample. The polyphenolics exhibited potent antioxidant activity with respect to free radical scavenging ability, total antioxidant activity and inhibition of lipid peroxidation. Administration of arsenic in mice showed a reduction of acetylcholinesterase activity in the brain which was counteracted by Acacia nilotica polyphenolics. Similarly, elevation of lipid peroxidation and depletion of glutathione in the brain of mice was effectively restored to normal level by Acacia nilotica polyphenolics. Gallic acid methyl ester, catechin and catechin-7-gallate were identified in the polyphenolics as the major active compounds. These results suggest that Acacia nilotica polyphenolics due to its strong antioxidant potential might be effective in the management of arsenic induced neurotoxicity.
Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust
The present paper deals with a complete batch adsorption study of 4-nitrophenol (4NP) from aqueous solution onto activated carbon prepared from Acacia glauca sawdust (AGAC). The surface area of the adsorbent determined by methylene blue method is found to be 311.20 m2/g. The optimum dose of adsorbent was found to be 2 g/l with 4NP uptake of 25.93 mg/g. The equilibrium time was found to be 30 minutes with the percentage removal of 96.40 at the initial concentration of 50 ppm. The maximum removal of 98.94% was found to be at pH of 6. The equilibrium and kinetic study revealed that the Radke–Prausnitz isotherm and pseudo second order kinetics model fitted the respective data well. In the thermodynamic study, the negative value of Gibbs free energy change (−26.38 kJ/mol at 30°C) and enthalpy change (−6.12 kJ/mol) showed the spontaneous and exothermic nature of the adsorption process.