Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
220
result(s) for
"Acaridae"
Sort by:
Oral delivery of water-soluble compounds to the phytoseiid mite Neoseiulus californicus (Acari: Phytoseiidae)
by
Suzuki, Takeshi
,
Ghazy, Noureldin A.
in
Acaridae - drug effects
,
Acaridae - growth & development
,
Acaridae - physiology
2019
Phytoseiids are predatory mites that prey on other mites and small arthropods, and several species are used in commercial agriculture for biological control of pests. To optimize phytoseiid mites' use in biocontrol, an efficient method for oral delivery of test compounds is required to assess their sensitivities to pesticides, RNAi for gene functional analysis and artificial diets. Here we developed four methods for oral delivery of a solution of xenobiotics to different life stages of the commercially available generalist predatory mite Neoseiulus californicus: (i) soaking mites in the solution, or allowing them to feed on (ii) spider mites soaked in the solution, (iii) a solution droplet, or (iv) solution-saturated filter paper. As measured by ingestion of a tracer dye, the droplet-based feeding system was most efficient; the dye was observed in the alimentary canal of >90% test mites of all life stages, with no mortality. The droplet-based feeding system was also effective for the commercially available specialist predatory mite Phytoseiulus persimilis, with >80% delivery efficiency. This study paves the way for development of methods for high-throughput RNAi and for toxicological or nutritional assays in phytoseiid mites.
Journal Article
Hidden biodiversity in microarthropods (Acari, Oribatida, Eremaeoidea, Caleremaeus)
2021
A challenge for taxonomists all over the world and across all taxonomic groups is recognizing and delimiting species, and cryptic species are even more challenging. However, an accurate identification is fundamental for all biological studies from ecology to conversation biology. We used a multidisciplinary approach including genetics as well as morphological and ecological data to assess if an easily recognizable, widely distributed and euryoecious mite taxon represents one and the same species. According to phylogenetic (based on mitochondrial and nuclear genes) and species delimitation analyses, five distinct putative species were detected and supported by high genetic distances. These genetic lineages correlate well with ecological data, and each species could be associated to its own (micro)habitat. Subsequently, slight morphological differences were found and provide additional evidence that five different species occur in Central and Southern Europe. The minuteness and the characteristic habitus of
Caleremaeus monilipes
tempted to neglect potential higher species diversity. This problem might concern several other “well-known” euryoecious microarthropods. Five new species of the genus
Caleremaeus
are described, namely
Caleremaeus mentobellus
sp. nov.,
C. lignophilus
sp. nov.,
C. alpinus
sp. nov.,
C. elevatus
sp. nov., and
C. hispanicus
sp. nov. Additionally, a morphological evaluation of
C. monilipes
is presented.
Journal Article
Transitional chelal digit patterns in saprophagous astigmatan mites
2024
Changes in the functional shape of astigmatan mite moveable digit profiles are examined to test if Tyrophagus putrescentiae (Acaridae) is a trophic intermediate between a typical micro-saprophagous carpoglyphid (Carpoglyphus lactis) and a common macro-saprophagous glycyphagid (Glycyphagus domesticus). Digit tip elongation in these mites is decoupled from the basic physics of optimising moveable digit inertia. Investment in the basal ramus/coronoid process compared to that for the moveable digit mastication length varies with feeding style. A differentiated ascending ramus is indicated in C. lactis and in T. putrescentiae for different trophic reasons. Culturing affects relative investments in C. lactis. A markedly different style of feeding is inferred for the carpoglyphid. The micro-saprophagous acarid does not have an intermediate pattern of trophic functional form between the other two species. Mastication surface shape complexity confirms the acarid to be heterodontous. T. putrescentiae is a particularly variably formed species trophically. A plausible evolutionary path for the gradation of forms is illustrated. Digit form and strengthening to resist bending under occlusive loads is explored in detail. Extensions to the analytical approach are suggested to confirm the decoupling of moveable digit pattern from cheliceral and chelal adaptations. Caution is expressed when interpreting ordinations of multidimensional data in mites.
Journal Article
Morph-specific artificial selection reveals a constraint on the evolution of polyphenisms
by
Buzatto, Bruno A.
,
Tomkins, Joseph L.
,
Clark, Huon L.
in
Acaridae - anatomy & histology
,
Acaridae - genetics
,
Acaridae - physiology
2018
Theory predicts that the evolution of polyphenic variation is facilitated where morphs are genetically uncoupled and free to evolve towards their phenotypic optima. However, the assumption that developmentally plastic morphs can evolve independently has not been tested directly. Using morph-specific artificial selection, we investigated correlated evolution between the sexes and male morphs of the bulb mite Rhizoglyphus echinopus. Large ‘fighter’ males have a thick and sharply terminating pair of legs used to kill rival males, while small ‘scrambler’ males have unmodified legs, and search for unguarded females, avoiding fights. We selected on the relative leg width of only the fighter male morph, tracked the evolutionary responses in fighters and the correlated evolutionary responses in scramblers and females that were untouched by direct selection. Fighters diverged in relative leg thickness after six generations; assaying scramblers and females at the ninth generation we observed correlated responses in relative leg width in both. Our results represent strong evidence for the evolution of intraspecific phenotypic diversity despite correlated evolution between morphs and sexes, challenging the idea that male morphs are genetically uncoupled and free to independently respond to selection. We therefore question the perceived necessity for genetic independence in traits with extreme phenotypic plasticity.
Journal Article
Diet modulation of the microbiome of the pest storage mite Tyrophagus putrescentiae
by
Hubert, Jan
,
Green, Stefan J
,
Nesvorna, Marta
in
Acaridae - genetics
,
Acaridae - microbiology
,
Animals
2023
Abstract
Storage mites colonize a wide spectrum of food commodities and adaptations to diets have been suggested as mechanisms enabling successful colonization. We characterized the response of seven unique Tyrophagus putrescentiae cultures (5K, 5L, 5N, 5P, 5Pi, 5S, and 5Tk) with different baseline microbiomes to different diets. The offered diets included a rearing diet, protein-enriched diet, oat flakes, and sunflower seeds. Microbiome characterization was performed using 16S ribosomal RNA (rRNA) gene amplicon sequencing and 16S rRNA gene quantitative PCR. The mite culture microbiomes were classified into four groups: (i) Sodalis-dominated (5Pi), (ii) Wolbachia-dominated (5N and 5P), (iii) Cardinium-dominated (5L and 5S), and (iv) asymbiontic (5K and 5Tk) mites dominated by Bacillus and Bartonella. Mite growth rates were most strongly affected by nutrients in the diet, while respiration and microbial community profiles were largely influenced by mite culture. While growth rate was not directly explained by microbiome composition, microbiomes strongly influenced mite fitness as measured by respiration. While diet significantly influenced microbial profiles in all cultures, the effect of diet differed in impact between cultures (5Pi > 5S > 5N > 5K > 5Tk > 5L > 5P). Furthermore, no new bacterial taxa were acquired by mites after dietary changes. Bacteria from the taxa Bacillus, Bartonella-like, Solitalea-like, Kocuria, and Sodalis-like contributed most strongly to differentiating mite-associated microbiomes.
Rearing of the mite populations on different diets did not lead to the loss of the dominant microbial taxa but did modify the overall microbiome profiles.
Journal Article
The indirect influence of potential mates on survival and reproduction of Tyrophagus curvipenis (Acari: Acaridae)
2024
The social-sexual environment is well known for its influence on the survival of organisms by modulating their reproductive output. However, whether it affects survival indirectly through a variety of cues without physical contact and its influence relative to direct interaction remain largely unknown. In this study, we investigated both the indirect and direct influences of the social-sexual environment on the survival and reproduction of the mite Tyrophagus curvipenis (Acari: Acaridae). The results demonstrated no apparent influence of conspecific cues on the survival of mites, but the survival and reproduction of mated female mites significantly changed, with the females mated with males having a significantly shortened lifespan and increased lifetime fecundity. For males, no significant difference was observed across treatments in their survival and lifespan. These findings indicate that direct interaction with the opposite sex has a much more profound influence on mites than indirect interaction and highlight the urgent need to expand research on how conspecific cues modulate the performance of organisms with more species to clarify their impacts across taxa.
Journal Article
The Effect of Antibiotics on Associated Bacterial Community of Stored Product Mites
by
Kopecky, Jan
,
Hubert, Jan
,
Mareckova-Sagova, Marketa
in
Acari
,
Acaridae - drug effects
,
Acaridae - growth & development
2014
Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria.
Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mg g(-1) of diet) for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor.
The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mg g(-1) antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.
Journal Article
The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest
by
Snoeck, Simon
,
Greenhalgh, Robert
,
Van Leeuwen, Thomas
in
631/337/2019
,
631/601/1466
,
Acaricides
2017
Synergists can counteract metabolic insecticide resistance by inhibiting detoxification enzymes or transporters. They are used in commercial formulations of insecticides, but are also frequently used in the elucidation of resistance mechanisms. However, the effect of synergists on genome-wide transcription in arthropods is poorly understood. In this study we used Illumina RNA-sequencing to investigate genome-wide transcriptional responses in an acaricide resistant strain of the spider mite
Tetranychus urticae
upon exposure to synergists such as S,S,S-tributyl phosphorotrithioate (DEF), diethyl maleate (DEM), piperonyl butoxide (PBO) and cyclosporin A (CsA). Exposure to PBO and DEF resulted in a broad transcriptional response and about one third of the differentially expressed genes (DEGs), including cytochrome P450 monooxygenases and UDP-glycosyltransferases, was shared between both treatments, suggesting common transcriptional regulation. Moreover, both DEF and PBO induced genes that are strongly implicated in acaricide resistance in the respective strain. In contrast, CsA treatment mainly resulted in downregulation of Major Facilitator Superfamily (MFS) genes, while DEGs of the DEM treatment were not significantly enriched for any GO-terms.
Journal Article
Biosynthetic pathway of aliphatic formates via a Baeyer–Villiger oxidation in mechanism present in astigmatid mites
2017
Astigmatid mites depend on bioactive glandular secretions, pheromones, and defensive agents to mediate intra- and interspecies interactions. Aliphatic formates, such as (Z,Z)-8,11-heptadecadienyl formate (8,11-F17) and (Z)-8-heptadecenyl formate (8-F17), are rarely encountered natural products that are abundant in Sancassania sp. Sasagawa (Acari: Acaridae) mite secretions. Linoleic acid and oleic acid are predicted as key intermediates in the synthesis of the closely related aliphatic formates. To gain insight in this biosynthetic pathway, acarid mite feeding experiments were conducted using 13C-labeled precursors to precisely track incorporation. Analyses using 13C NMR spectroscopy demonstrated that the 13C-labeling pattern of the precursors was detectable on formates in exocrine secretions and likewise on fatty acids in total lipid pools. Curiously, the results demonstrated that the formates were biosynthesized without the dehomologation of corresponding fatty acids. Careful examination of the mass spectra from labeling experiments revealed that the carbonyl carbon of the formates is originally derived from the C-1 position of the fatty acids. Consistent with a Baeyer–Villiger oxidation reaction, labeling studies support the insertion of an oxygen atom between the carbonyl group and carbon chain. Empirical data support the existence of a Baeyer–Villiger monooxygenase responsible for the catalyzation of the Baeyer–Villiger oxidation. The predicted existence of a Baeyer–Villiger monooxygenase capable of converting aliphatic aldehydes to formates represents an exciting opportunity to expand the enzymatic toolbox available for controlled biochemical synthesis.
Journal Article
Small-scale genetic structure of populations of the bulb mite Rhizoglyphus robini
2023
Bulb mites are an economically significant pest of subterranean parts of plants and a versatile laboratory animal. However, the genetic structure of their populations remains unknown. To fill this gap in our knowledge of their biology, we set up a field experiment in which we allowed mites to colonize onion bulbs, and then determined the genetic structure of colonisers based on a panel of microsatellite loci. We found moderate but significant population structure among sites separated by ca. 20 m (FST range 0.03–0.21), with 7% of genetic variance distributed among sites. Allelic richness within some bulbs was nearly as high as that in the total population, suggesting that colonisation of bulbs was not associated with strong population bottlenecks. The significant genetic structure we observed over small spatial scales seems to reflect limited dispersal of mites in soil.
Journal Article