Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
216 result(s) for "Accelerometry - standards"
Sort by:
How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies
ObjectiveTo determine the accuracy of wrist and arm-worn activity monitors’ estimates of energy expenditure (EE).Data sourcesSportDISCUS (EBSCOHost), PubMed, MEDLINE (Ovid), PsycINFO (EBSCOHost), Embase (Ovid) and CINAHL (EBSCOHost).DesignA random effects meta-analysis was performed to evaluate the difference in EE estimates between activity monitors and criterion measurements. Moderator analyses were conducted to determine the benefit of additional sensors and to compare the accuracy of devices used for research purposes with commercially available devices.Eligibility criteriaWe included studies validating EE estimates from wrist-worn or arm-worn activity monitors against criterion measures (indirect calorimetry, room calorimeters and doubly labelled water) in healthy adult populations.Results60 studies (104 effect sizes) were included in the meta-analysis. Devices showed variable accuracy depending on activity type. Large and significant heterogeneity was observed for many devices (I2 >75%). Combining heart rate or heat sensing technology with accelerometry decreased the error in most activity types. Research-grade devices were statistically more accurate for comparisons of total EE but less accurate than commercial devices during ambulatory activity and sedentary tasks.ConclusionsEE estimates from wrist and arm-worn devices differ in accuracy depending on activity type. Addition of physiological sensors improves estimates of EE, and research-grade devices are superior for total EE. These data highlight the need to improve estimates of EE from wearable devices, and one way this can be achieved is with the addition of heart rate to accelerometry.PROSPEROregistration numberCRD42018085016.
An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics
Accelerometers have been widely deployed in public health studies in recent years. While they collect high-resolution acceleration signals (e.g., 10-100 Hz), research has mainly focused on summarized metrics provided by accelerometers manufactures, such as the activity count (AC) by ActiGraph or Actical. Such measures do not have a publicly available formula, lack a straightforward interpretation, and can vary by software implementation or hardware type. To address these problems, we propose the physical activity index (AI), a new metric for summarizing raw tri-axial accelerometry data. We compared this metric with the AC and another recently proposed metric for raw data, Euclidean Norm Minus One (ENMO), against energy expenditure. The comparison was conducted using data from the Objective Physical Activity and Cardiovascular Health Study, in which 194 women 60-91 years performed 9 lifestyle activities in the laboratory, wearing a tri-axial accelerometer (ActiGraph GT3X+) on the hip set to 30 Hz and an Oxycon portable calorimeter, to record both tri-axial acceleration time series (converted into AI, AC, and ENMO) and oxygen uptake during each activity (converted into metabolic equivalents (METs)) at the same time. Receiver operating characteristic analyses indicated that both AI and ENMO were more sensitive to moderate and vigorous physical activities than AC, while AI was more sensitive to sedentary and light activities than ENMO. AI had the highest coefficients of determination for METs (0.72) and was a better classifier of physical activity intensity than both AC (for all intensity levels) and ENMO (for sedentary and light intensity). The proposed AI provides a novel and transparent way to summarize densely sampled raw accelerometry data, and may serve as an alternative to AC. The AI's largely improved sensitivity on sedentary and light activities over AC and ENMO further demonstrate its advantage in studies with older adults.
Quality Control Methods in Accelerometer Data Processing: Defining Minimum Wear Time
When using accelerometers to measure physical activity, researchers need to determine whether subjects have worn their device for a sufficient period to be included in analyses. We propose a minimum wear criterion using population-based accelerometer data, and explore the influence of gender and the purposeful inclusion of children with weekend data on reliability. Accelerometer data obtained during the age seven sweep of the UK Millennium Cohort Study were analysed. Children were asked to wear an ActiGraph GT1M accelerometer for seven days. Reliability coefficients(r) of mean daily counts/minute were calculated using the Spearman-Brown formula based on the intraclass correlation coefficient. An r of 1.0 indicates that all the variation is between- rather than within-children and that measurement is 100% reliable. An r of 0.8 is often regarded as acceptable reliability. Analyses were repeated on data from children who met different minimum daily wear times (one to 10 hours) and wear days (one to seven days). Analyses were conducted for all children, separately for boys and girls, and separately for children with and without weekend data. At least one hour of wear time data was obtained from 7,704 singletons. Reliability increased as the minimum number of days and the daily wear time increased. A high reliability (r = 0.86) and sample size (n = 6,528) was achieved when children with ≥ two days lasting ≥10 hours/day were included in analyses. Reliability coefficients were similar for both genders. Purposeful sampling of children with weekend data resulted in comparable reliabilities to those calculated independent of weekend wear. Quality control procedures should be undertaken before analysing accelerometer data in large-scale studies. Using data from children with ≥ two days lasting ≥10 hours/day should provide reliable estimates of physical activity. It's unnecessary to include only children with accelerometer data collected during weekends in analyses.
Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches
(1) To develop and internally-validate Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) thresholds for separating sedentary behaviours from common light-intensity physical activities using raw acceleration data collected from both hip- and wrist-worn tri-axial accelerometers; and (2) to compare and evaluate the performances between the ENMO and MAD metrics. Thirty-three adults [mean age (standard deviation (SD)) = 27.4 (5.9) years; mean BMI (SD) = 23.9 (3.7) kg/m2; 20 females (60.6%)] wore four accelerometers; an ActiGraph GT3X+ and a GENEActiv on the right hip; and an ActiGraph GT3X+ and a GENEActiv on the non-dominant wrist. Under laboratory-conditions, participants performed 16 different activities (11 sedentary behaviours and 5 light-intensity physical activities) for 5 minutes each. ENMO and MAD were computed from the raw acceleration data, and logistic regression and receiver-operating-characteristic (ROC) analyses were implemented to derive thresholds for activity discrimination. Areas under ROC curves (AUROC) were calculated to summarise performances and thresholds were assessed via executing leave-one-out-cross-validations. For both hip and wrist monitor placements, in comparison to the ActiGraph GT3X+ monitors, the ENMO and MAD values derived from the GENEActiv devices were observed to be slightly higher, particularly for the lower-intensity activities. Monitor-specific hip and wrist ENMO and MAD thresholds showed excellent ability for separating sedentary behaviours from motion-based light-intensity physical activities (in general, AUROCs >0.95), with validation indicating robustness. However, poor classification was experienced when attempting to isolate standing still from sedentary behaviours (in general, AUROCs <0.65). The ENMO and MAD metrics tended to perform similarly across activities and accelerometer brands. Researchers can utilise these robust monitor-specific hip and wrist ENMO and MAD thresholds, in order to accurately separate sedentary behaviours from common motion-based light-intensity physical activities. However, caution should be taken if isolating sedentary behaviours from standing is of particular interest.
StopWatch: The Preliminary Evaluation of a Smartwatch-Based System for Passive Detection of Cigarette Smoking
Recent developments in smoking cessation support systems and interventions have highlighted the requirement for unobtrusive, passive ways to measure smoking behavior. A number of systems have been developed for this that either use bespoke sensing technology, or expensive combinations of wearables and smartphones. Here, we present StopWatch, a system for passive detection of cigarette smoking that runs on a low-cost smartwatch and does not require additional sensing or a connected smartphone. Our system uses motion data from the accelerometer and gyroscope in an Android smartwatch to detect the signature hand movements of cigarette smoking. It uses machine learning techniques to transform raw motion data into motion features, and in turn into individual drags and instances of smoking. These processes run on the smartwatch, and do not require a smartphone. We conducted preliminary validations of the system in daily smokers (n = 13) in laboratory and free-living conditions running on an Android LG G-Watch. In free-living conditions, over a 24-h period, the system achieved precision of 86% and recall of 71%. StopWatch is a system for passive measurement of cigarette smoking that runs entirely on a commercially available Android smartwatch. It requires no smartphone so the cost is low, and needs no bespoke sensing equipment so participant burden is also low. Performance is currently lower than other more expensive and complex systems, though adequate for some applications. Future developments will focus on enhancing performance, validation on a range of smartwatches, and detection of electronic cigarette use. We present a low-cost, smartwatch-based system for passive detection of cigarette smoking. It uses data from the motion sensors in the watch to identify the signature hand movements of cigarette smoking. The system will provide the detailed measures of individual smoking behavior needed for context-triggered just-in-time smoking cessation support systems, and to enable just-in-time adaptive interventions. More broadly, the system will enable researchers to obtain detailed measures of individual smoking behavior in free-living conditions that are free from the recall errors and reporting biases associated with self-report of smoking.
Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults
Accelerometers are commonly used to assess physical activity. Consumer activity trackers have become increasingly popular today, such as the Fitbit. This study aimed to compare the average number of steps per day using the wrist-worn Fitbit Flex and waist-worn ActiGraph (wGT3X-BT) in free-living conditions. 104 adult participants (n = 35 males; n = 69 females) were asked to wear a Fitbit Flex and an ActiGraph concurrently for 7 days. Daily step counts were used to classify inactive (<10,000 steps) and active (≥10,000 steps) days, which is one of the commonly used physical activity guidelines to maintain health. Proportion of agreement between physical activity categorizations from ActiGraph and Fitbit Flex was assessed. Statistical analyses included Spearman's rho, intraclass correlation (ICC), median absolute percentage error (MAPE), Kappa statistics, and Bland-Altman plots. Analyses were performed among all participants, by each step-defined daily physical activity category and gender. The median average steps/day recorded by Fitbit Flex and ActiGraph were 10193 and 8812, respectively. Strong positive correlations and agreement were found for all participants, both genders, as well as daily physical activity categories (Spearman's rho: 0.76-0.91; ICC: 0.73-0.87). The MAPE was: 15.5% (95% confidence interval [CI]: 5.8-28.1%) for overall steps, 16.9% (6.8-30.3%) vs. 15.1% (4.5-27.3%) in males and females, and 20.4% (8.7-35.9%) vs. 9.6% (1.0-18.4%) during inactive days and active days. Bland-Altman plot indicated a median overestimation of 1300 steps/day by the Fitbit Flex in all participants. Fitbit Flex and ActiGraph respectively classified 51.5% and 37.5% of the days as active (Kappa: 0.66). There were high correlations and agreement in steps between Fitbit Flex and ActiGraph. However, findings suggested discrepancies in steps between devices. This imposed a challenge that needs to be considered when using Fibit Flex in research and health promotion programs.
Accelerometry for remote monitoring of physical activity in amyotrophic lateral sclerosis: a longitudinal cohort study
BackgroundThe extensive heterogeneity between patients with amyotrophic lateral sclerosis (ALS) complicates the quantification of disease progression. In this study, we determine the value of remote, accelerometer-based monitoring of physical activity in patients with ALS.MethodsThis longitudinal cohort study was conducted in a home-based setting; all study materials were sent by mail. Patients wore the ActiGraph during waking hours for 7 days every 2–3 months and provided information regarding their daily functioning (ALSFRS-R). We defined four accelerometer-based endpoints that either reflect the average daily activity or quantify the patient’s physical capacity.ResultsA total of 42 patients participated; the total valid monitoring period was 9288 h with a 93.0% adherence rate. At baseline, patients were active 27.9% (range 11.6–52.4%) of their time; this declined by 0.64% (95% 0.43–0.86, p < 0.001) per month. Accelerometer-based endpoints were strongly associated with the ALSFRS-R (r 0.78, 95% CI 0.63–0.92, p < 0.001), but showed less variability over time than the ALSFRS-R (coefficient of variation 0.64–0.81 vs. 1.06, respectively). Accelerometer-based endpoints could reduce sample size by 30.3% for 12-month trials and 44.6% for 18-month trials; for trials lasting less than 9 months, the ALSFRS-R resulted in smaller sample sizes.ConclusionAccelerometry is an objective method for quantifying disease progression, which could obtain real-world insights in the patient’s physical functioning and may personalize the delivery of care. In addition, remote monitoring provides patients with the opportunity to participate in clinical trials from home, paving the way to a patient-centric clinical trial model.
Criterion validity of the activPAL™ and ActiGraph for assessing children's sitting and standing time in a school classroom setting
Few studies have investigated the accuracy of the ActiGraph (AG) GTX3 accelerometer for assessing children's sitting and standing time. The activPAL (aP) has an inclinometer function that enables it to distinguish between sitting/lying and standing; however, its accuracy for assessing sitting and standing in older children is unknown. This study validated the accuracy of these devices for estimating sitting and standing time in a school classroom against a criterion measure of direct observation (DO). Forty children in grades 5-7 wore both devices while being video recorded during two school lessons. AG and aP data were simultaneously collected in 15-s epochs. Individual participant DO and aP data were recorded as total time spent sitting/lying, standing and stepping. AG data were converted into time spent sitting and standing using previously established cut-points. Compared with DO, the aP underestimated sitting time (mean bias = -1.9 min, 95 % LoA = -8.9 to 5.2 min) and overestimated standing time (mean bias = 1.8 min, 95% LoA = -9.6 to 13.3 min). The best-performing AG cut-point across both sitting and standing (<75 counts/15 s) was more accurate than the aP, underestimating sitting time (mean bias = -0.8 min, 95 % LoA = -10.5 to 9.9 min) and standing time (mean bias = -0.4 min, 95% LoA = -9.8 to 9.1 min), but was less precise as evidenced by wider LoAs and poorer correlations with DO (sitting r = 0.86 aP vs 0.80 AG; standing r = 0.78 aP vs 0.60 AG). The aP demonstrated good accuracy and precision for assessing free-living sitting and standing time in classroom settings. The AG was most accurate using a cut-point of < 75 counts/15 s. Further studies should validate the monitors in settings with greater inter- and intra-individual variation in movement patterns.
The Validity and Value of Self-reported Physical Activity and Accelerometry in People With Schizophrenia: A Population-Scale Study of the UK Biobank
Previous physical activity (PA) research in schizophrenia has relied largely upon self-report measures. However, the accuracy of this method is questionable. Obtaining accurate measurements, and determining what may influence PA levels in schizophrenia, is essential to understand physical inactivity in this population. This study examined differences in self-reported and objectively measured PA in people with schizophrenia and the general population using a large, population-based dataset from the UK Biobank. Baseline data from the UK Biobank (2007-2010) were analyzed; including 1078 people with schizophrenia (54.19 ± 8.39 years; 55% male) and 450549 without (56.44 ± 8.11; 46% male). We compared self-reported PA with objectively measured accelerometry data in schizophrenia and comparison samples. We also examined correlations between self-report and objective measures. People with schizophrenia reported the same PA levels as those without, with no differences in low, moderate, or vigorous intensity activity. However, accelerometry data showed a large and statistically significant reduction of PA in schizophrenia; as people with schizophrenia, on average, engaged in less PA than 80% of the general population. Nonetheless, within the schizophrenia sample, total self-reported PA still held significant correlations with objective measures. People with schizophrenia are significantly less active than the general population. However, self-report measures in epidemiological studies fail to capture the reduced activity levels in schizophrenia. This also has implications for self-report measures of other lifestyle factors which may contribute toward the poor health outcomes observed in schizophrenia. Nonetheless, self-report measures may still be useful for identifying how active individuals with schizophrenia relative to other patients.
Stress experiences in neighborhood and social environments (SENSE): a pilot study to integrate the quantified self with citizen science to improve the built environment and health
Background Identifying elements of one’s environment—observable and unobservable—that contribute to chronic stress including the perception of comfort and discomfort associated with different settings, presents many methodological and analytical challenges. However, it also presents an opportunity to engage the public in collecting and analyzing their own geospatial and biometric data to increase community member understanding of their local environments and activate potential environmental improvements. In this first-generation project, we developed a methodology to integrate geospatial technology with biometric sensing within a previously developed, evidence-based “citizen science” protocol, called “Our Voice.” Participants used a smartphone/tablet-based application, called the Discovery Tool (DT), to collect photos and audio narratives about elements of the built environment that contributed to or detracted from their well-being. A wrist-worn sensor (Empatica E4) was used to collect time-stamped data, including 3-axis accelerometry, skin temperature, blood volume pressure, heart rate, heartbeat inter-beat interval, and electrodermal activity (EDA). Open-source R packages were employed to automatically organize, clean, geocode, and visualize the biometric data. Results In total, 14 adults (8 women, 6 men) were successfully recruited to participate in the investigation. Participants recorded 174 images and 124 audio files with the DT. Among captured images with a participant-determined positive or negative rating (n = 131), over half were positive (58.8%, n = 77). Within-participant positive/negative rating ratios were similar, with most participants rating 53.0% of their images as positive (SD 21.4%). Significant spatial clusters of positive and negative photos were identified using the Getis-Ord Gi* local statistic, and significant associations between participant EDA and distance to DT photos, and street and land use characteristics were also observed with linear mixed models. Interactive data maps allowed participants to (1) reflect on data collected during the neighborhood walk, (2) see how EDA levels changed over the course of the walk in relation to objective neighborhood features (using basemap and DT app photos), and (3) compare their data to other participants along the same route. Conclusions Participants identified a variety of social and environmental features that contributed to or detracted from their well-being. This initial investigation sets the stage for further research combining qualitative and quantitative data capture and interpretation to identify objective and perceived elements of the built environment influence our embodied experience in different settings. It provides a systematic process for simultaneously collecting multiple kinds of data, and lays a foundation for future statistical and spatial analyses in addition to more in-depth interpretation of how these responses vary within and between individuals.