Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
28,128 result(s) for "Acidification"
Sort by:
Ocean Acidification
The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.
Individual Pattern Response to COsub.2-Induced Acidification Stress in IHaliotis rufescens/I Suggests Stage-Specific Acclimatization during Its Early Life History
The red abalone Haliotis rufescens is a pivotal marine resource in the context of worldwide abalone aquaculture. However, the species has been listed as critically endangered partly because of the life-history massive mortalities associated with habitat climate changes, including short- and long-term ocean acidification. Because abalone survival depends on its early life history success, figuring out its vulnerability to acidification is the first step to establishing culture management strategies. In the present study, red abalone embryos were reared under long-term CO[sub.2]-induced acidification (pH 7.8 and 7.6) and evaluated. The impairment prevalence was assessed during their larval stages, considering the developmental success, growth and calcification. The result in the stage-specific disturbance suggests that the body abilities evaluated are at the expense of their development stages, of which the critical threshold is found under −0.4 pH units. Finally, the settlement was short-term stressed, displaying the opposite to that observed in the long-term acidification. Thus, the early life history interacts through multiple pathways that may also depend on the acidification challenge (i.e., short or long term). Understanding the tolerance limits and pathways of the stress response provides valuable insights for exploring the vulnerability of H. rufescens to ocean acidification.
Two sets of amino acids of the domain I of Cav2.3 Ca super(2+) channels contribute to their high sensitivity to extracellular protons
Extracellular acidification decreases Ca super(2+) current amplitude and produces a depolarizing shift in the activation potential (Va) of voltage-gated Ca super(2+) channels (VGCC). These effects are common to all VGCC, but differences exist between Ca super(2+) channel types and the underlying molecular mechanisms remain largely unknown. We report here that the changes in current amplitude induced by extracellular acidification or alkalinisation are more important for Cav2.3 R type than for Cav2.1 P/Q-type Ca super(2+) channels. This difference results from a higher shift of Va combined with a modification of channel conductance. Although involved in the sensitivity of channel conductance to extracellular protons, neither the EEEE locus nor the divalent cation selectivity locus could explain the specificity of the pH effects. We show that this specificity involves two separate sets of amino acids within domain I of the Cav alpha subunit. Residues of the voltage sensor domain and residues in the pore domain mediate the effects of extracellular protons on Va and on channel conductance, respectively. These new insights are important for elucidating the molecular mechanisms that control VGCC gating and conductance and for understanding the role of extracellular protons in other channels or membrane-tethered enzymes with similar pore and/or voltage sensor domains.
Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China
Purpose Soil acidification from chemical N fertilization has worsened and is a major yield-limiting factor in the red soil (Ferralic Cambisol) of southern China. Assessment of the acidification process under field conditions over a long term is essential to develop strategies for maintaining soil productivity. The objective of this study was to quantify soil acidification rates from chemical fertilizers and determine the amount of manure needed to inhibit the acidification process. Materials and methods A long-term experiment with various fertilizations was carried out during 1990–2008 in a wheat–corn cropping system in the red soil of southern China. Treatments included non-fertilized control, chemical N only (N), chemical N and P (NP), chemical N, P and K (NPK), pig manure only (M), and NPK plus M (NPKM; 70 % total N from M). All N treatments had an input of 300 kg N ha −1  year −1 . Annual soil sampling was carried out for pH measurement and acidity analysis. Results and discussion Soil pH decreased sharply from an initial pH of 5.7 and then stabilized after 8 to 12 years of fertilization in the N, NP, and NPK treatments with a final pH of 4.2, 4.5, and 4.5, respectively. These three treatments significantly increased soil exchangeable acidity dominated by Al, decreased soil exchangeable base cations (Ca 2+ and Mg 2+ ), and elevated acidification rates (3.2–3.9 kmol H + ha −1  year −1 ). In contrast, the manure applications (M or NPKM) showed either an increase or no change in soil pH and increases in soil exchangeable base cations. Conclusions Urea application to the intensive cropping system accelerated acidification of the red soil during the 18-year field experiment. As 70 % or more total N source, continuous manure application can fully prevent or reverse red soil acidification process. As an effective animal waste management tool, manure incorporation into the acidic soil can promote the overall agricultural sustainability.
Mechanisms and implications of bacterial–fungal competition for soil resources
Elucidating complex interactions between bacteria and fungi that determine microbial community structure, composition, and functions in soil, as well as regulate carbon (C) and nutrient fluxes, is crucial to understand biogeochemical cycles. Among the various interactions, competition for resources is the main factor determining the adaptation and niche differentiation between these two big microbial groups in soil. This is because C and energy limitations for microbial growth are a rule rather than an exception. Here, we review the C and energy demands of bacteria and fungi—the two major kingdoms in soil—the mechanisms of their competition for these and other resources, leading to niche differentiation, and the global change impacts on this competition. The normalized microbial utilization preference showed that bacteria are 1.4–5 times more efficient in the uptake of simple organic compounds as substrates, whereas fungi are 1.1–4.1 times more effective in utilizing complex compounds. Accordingly, bacteria strongly outcompete fungi for simple substrates, while fungi take advantage of complex compounds. Bacteria also compete with fungi for the products released during the degradation of complex substrates. Based on these specifics, we differentiated spatial, temporal, and chemical niches for these two groups in soil. The competition will increase under the main five global changes including elevated CO2, N deposition, soil acidification, global warming, and drought. Elevated CO2, N deposition, and warming increase bacterial dominance, whereas soil acidification and drought increase fungal competitiveness.