Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
40,860 result(s) for "Acoustical engineering."
Sort by:
The art of theatrical sound design : a practical guide
Emphasising the artistry behind the decisions made by theatrical sound designers, this guide is for anyone seeking to understand the nature of sound and how to apply it to the stage. Through tried-and-tested advice and lessons in practical application, The Art of Theatrical Sound Design allows developing artists to apply psychology, physiology, sociology, anthropology and all aspects of sound phenomenology to theatrical sound design. Structured in three parts, the book explores, theoretically, how human beings perceive the vibration of sound; offers exercises to develop support for storytelling by creating an emotional journey for the audience; considers how to collaborate and communicate as a theatre artist; and discusses how to create a cohesive sound design for the stage.
Finite Element and Boundary Methods in Structural Acoustics and Vibration
A unique and in-depth presentation of the finite element method (FEM) and the boundary element method (BEM) in structural acoustics and vibrations, this book illustrates the principles using a logical and progressive methodology, which leads to a thorough understanding of their physical and mathematical principles and their implementation to solve a wide range of problems in structural acoustics and vibration. This book helps readers to understand the principles, use of the FEM, and the BEM in structural acoustics and vibrations.
Vibroacoustic simulation : an introduction to statistical energy analysis and hybrid methods
VIBROACOUSTIC SIMULATION Learn to master the full range of vibroacoustic simulation using both SEA and hybrid FEM/SEA methods Vibroacoustic simulation is the discipline of modelling and predicting the acoustic waves and vibration of particular objects, systems, or structures. This is done through finite element methods (FEM) or statistical energy analysis (SEA) to cover the full frequency range. In the mid-frequency range, both methods must be combined into a hybrid FEM/SEA approach. By doing so, engineers can model full frequency vibroacoustic simulations in complex technical systems used in aircraft, trains, cars, ships, and satellites. Indeed, hybrid approaches are increasingly used in the automotive, aerospace, and rail industries. Previously covered primarily in scientific journals, Vibroacoustic Simulation provides a practical approach that helps readers master the full frequency range of vibroacoustic simulation. Through a systematic approach, the book illustrates why both FEM and SEA are necessary in acoustic engineering and how both can be used in combination through hybrid methodologies. Striking a crucial balance between complex theories and practical applications, the text provides real-world examples of vibroacoustic simulation, such as fuselage simulation, interior-noise prediction for electric and combustion vehicles, train profiles, and more, to help elucidate the concepts described within. Vibroacoustic Simulation also features: A balance of complex theories with the nuts and bolts of real-world applications Detailed worked examples of junction equations Case studies from companies like Audi and Airbus that illustrate how the methods discussed have been applied in real-world projects A companion website that provides corresponding Python codes for all examples, allowing readers to work through the examples on their own Vibroacoustic Simulation is a useful reference for acoustic and mechanical engineers working in the automotive, aerospace, defense, or rail industries, as well as researchers and graduate students studying acoustics.
Audio engineering and the science of soundwaves
Explores how the work of audio engineers combines the science of sound with the engineering design process, including how these engineers find solutions to audio challenges.
Engineering acoustics : noise and vibration control
ENGINEERING ACOUSTICS NOISE AND VIBRATION CONTROL A masterful introduction to the theory of acoustics along with methods for the control of noise and vibration In Engineering Acoustics: Noise and Vibration Control, two experts in the field review the fundamentals of acoustics, noise, and vibration. The authors show how this theoretical work can be applied to real-world problems such as the control of noise and vibration in aircraft, automobiles and trucks, machinery, and road and rail vehicles. Engineering Acoustics: Noise and Vibration Control covers a wide range of topics. The sixteen chapters include the following: * Human hearing and individual and community response to noise and vibration * Noise and vibration instrumentation and measurements * Interior and exterior noise of aircraft as well as road and rail vehicles * Methods for the control of noise and vibration in industrial equipment and machinery * Use of theoretical models in absorptive and reactive muffler and silencer designs * Practical applications of finite element, boundary element and statistical energy analysis * Sound intensity theory, measurements, and applications * Noise and vibration control in buildings * How to design air-conditioning systems to minimize noise and vibration Readers, whether students, professional engineers, or community planners, will find numerous worked examples throughout the book, and useful references at the end of each chapter to support supplemental reading on specific topics. There is a detailed index and a glossary of terms in acoustics, noise, and vibration.
Acoustic Analyses Using Matlab and Ansys
This book describes the use of ANSYS finite element analysis software and MATLAB to solve acoustic problems, from simple ones to those requiring FEA software. Along with instructions on mathematical modelling, software hints and MATLAB source code. See https://mecheng.adelaide.edu.au/avc/software/.
Sonic skills : listening for knowledge in science, medicine and engineering (1920s-present)
It is common for us today to associate the practice of science primarily with the act of seeing - with staring at computer screens, analyzing graphs, and presenting images. This open access book explains why, indeed, listening for knowledge plays an ambiguous, if fascinating, role in the sciences. For what purposes have scientists, engineers, and physicians listened to the objects of their interest? How did they listen exactly? And why has listening often been contested as a legitimate form of access to scientific knowledge? This concise monograph combines historical and ethnographic evidence about the practices of listening on shop floors, in laboratories, field stations, hospitals, and conference halls, between the 1920s and today.
Noise and vibration analysis
Noise and Vibration Analysis is a complete and practical guide that combines both signal processing and modal analysis theory with their practical application in noise and vibration analysis. It provides an invaluable, integrated guide for practicing engineers as well as a suitable introduction for students new to the topic of noise and vibration. Taking a practical learning approach, Brandt includes exercises that allow the content to be developed in an academic course framework or as supplementary material for private and further study. Addresses the theory and application of signal analysis procedures as they are applied in modern instruments and software for noise and vibration analysis Features numerous line diagrams and illustrations Accompanied by a web site at www.wiley.com/go/brandt with numerous MATLAB tools and examples. Noise and Vibration Analysis provides an excellent resource for researchers and engineers from automotive, aerospace, mechanical, or electronics industries who work with experimental or analytical vibration analysis and/or acoustics. It will also appeal to graduate students enrolled in vibration analysis, experimental structural dynamics, or applied signal analysis courses.