Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
639 result(s) for "Acousto-optics"
Sort by:
Acousto-Optic Cells with Phased-Array Transducers and Their Application in Systems of Optical Information Processing
This paper presents the results of theoretical and experimental studies of anisotropic acousto-optic interaction in a spatially periodical acoustic field created by a phased-array transducer with antiphase excitation of adjacent sections. In this case, contrary to the nonsectioned transducer, light diffraction is absent when the optical beam falls on the phased-array cell at the Bragg angle. However, the diffraction takes place at some other angles (called “optimal” here), which are situated on the opposite sides to the Bragg angle. Our calculations show that the diffraction efficiency can reach 100% at these optimal angles in spite of a noticeable acousto-optic phase mismatch. This kind of acousto-optic interaction possesses a number of interesting regularities which can be useful for designing acousto-optic devices of a new type. Our experiments were performed with a paratellurite (TeO2) cell in which a shear acoustic mode was excited at a 9∘ angle to the crystal plane (001). The piezoelectric transducer had to nine antiphase sections. The efficiency of electric to acoustic power conversion was 99% at the maximum frequency response, and the ultrasound excitation band extended from 70 to 160 MHz. The experiments have confirmed basic results of the theoretical analysis.
The possibility of direct registration of the optical spectrum derivatives using the acousto-optic spectroscopy methods
Using the example of the spectrometer based on acousto-optical (AO) cell with jump phase manipulation developed at the Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences, the possibility of creating a new class of instruments, i.e. differential AO spectrometers with arbitrary addressing working in real time, is shown. In the paper it is calculated how the error value determining the maximum position changes when the position of the combined peaks changes, as well as the dependence of this error on the peak width and height.
Brillouin integrated photonics
A recent renaissance in Brillouin scattering research has been driven by the increasing maturity of photonic integration platforms and nanophotonics. The result is a new breed of chip-based devices that exploit acousto-optic interactions to create lasers, amplifiers, filters, delay lines and isolators. Here, we provide a detailed overview of Brillouin scattering in integrated waveguides and resonators, covering key concepts such as the stimulation of the Brillouin process, in which the optical field itself induces acoustic vibrations, the importance of acoustic confinement, methods for calculating and measuring Brillouin gain, and the diversity of materials platforms and geometries. Our Review emphasizes emerging applications in microwave photonics, signal processing and sensing, and concludes with a perspective for future directions.
Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency
Efficient interconversion of both classical and quantum information between microwave and optical frequency is an important engineering challenge. The optomechanical approach with gigahertz-frequency mechanical devices has the potential to be extremely efficient due to the large optomechanical response of common materials, and the ability to localize mechanical energy into a micron-scale volume. However, existing demonstrations suffer from some combination of low optical quality factor, low electrical-to-mechanical transduction efficiency, and low optomechanical interaction rate. Here we demonstrate an on-chip piezo-optomechanical transducer that systematically addresses all these challenges to achieve nearly three orders of magnitude improvement in conversion efficiency over previous work. Our modulator demonstrates acousto-optic modulation with V π = 0.02 V. We show bidirectional conversion efficiency of 1 0 − 5 with 3.3 μW  red-detuned optical pump, and 5.5 % with 323 μW blue-detuned pump. Further study of quantum transduction at millikelvin temperatures is required to understand how the efficiency and added noise are affected by reduced mechanical dissipation, thermal conductivity, and thermal capacity. Current optomechanical implementations of microwave and optical frequency interconversion are lacking in efficiency and interaction strength. The authors design and demonstrate an on-chip piezo-optomechanical solution which overcomes several technical barriers to reach several orders of magnitude improvement in efficiency.
Non-reciprocal interband Brillouin modulation
Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.
Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics
Emerging technologies based on tailorable photon–phonon interactions promise new capabilities ranging from high-fidelity information processing to non-reciprocal optics and quantum state control. However, many existing realizations of such light–sound couplings involve unconventional materials and fabrication schemes challenging to co-implement with scalable integrated photonic circuitry. Here, we demonstrate direct acousto-optic modulation within silicon waveguides using electrically driven surface acoustic waves (SAWs). By co-integrating electromechanical SAW transducers with a standard silicon-on-insulator photonic platform, we harness silicon’s strong elasto-optic effect to create travelling-wave phase and single-sideband amplitude modulators from 1 to 5 GHz, with index modulation strengths comparable to electro-optic technologies. Extending this non-local interaction to centimetre scales, we demonstrate non-reciprocal modulation with operation bandwidths of >100 GHz and insertion losses of <0.6 dB. This acousto-optic platform is compatible with complementary metal–oxide–semiconductor fabrication processes and existing silicon photonic device architectures, opening the door to flexible, low-loss modulators and non-magnetic optical isolators and circulators in integrated photonic circuits.Direct acousto-optic modulation within complementary metal–oxide–semiconductor compatible silicon photonic waveguides using electrically driven surface acoustic waves is demonstrated. Non-reciprocal operation bandwidths of >100 GHz and insertion losses of <0.6 dB are obtained.
Acousto-optic scanning spatial-switching multiphoton lithography
Despite of tremendous potential of multiphoton lithography (MPL) in laboratorial and industrial applications, simultaneous achievement of high throughput, high accuracy, high design freedom, and a broad range of material structuring capabilities remains a long-pending challenge. To address the issue, we propose an acousto-optic scanning with spatial-switching multispots (AOSS) method. Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning. Moreover, a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom. An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^7 voxel/s, which is nearly one order of magnitude higher than earlier scanning MPL, exhibiting its promise for future scalable 3D nanomanufacturing.
The Scanning Processing of Materials with High-Frequency Pulsed Lasers Using Acousto-Optic Deflectors
A new scheme is developed for controlling the position and intensity of unpolarized radiation at several wavelengths. A feature of the optical scheme is the use of two-coordinate acousto-optic deflectors, each of which works with linearly polarized radiation (horizontal and vertical). A polarizing plate is used to separate the initial unpolarized laser radiation. Optical losses when using acousto-optic systems are estimated.
Advances in lithium niobate photonics: development status and perspectives
Lithium niobate (LN) has experienced significant developments during past decades due to its versatile properties, especially its large electro-optic (EO) coefficient. For example, bulk LN-based modulators with high speeds and a superior linearity are widely used in typical fiber-optic communication systems. However, with ever-increasing demands for signal transmission capacity, the high power and large size of bulk LN-based devices pose great challenges, especially when one of its counterparts, integrated silicon photonics, has experienced dramatic developments in recent decades. Not long ago, high-quality thin-film LN on insulator (LNOI) became commercially available, which has paved the way for integrated LN photonics and opened a hot research area of LN photonics devices. LNOI allows a large refractive index contrast, thus light can be confined within a more compact structure. Together with other properties of LN, such as nonlinear/acousto-optic/pyroelectric effects, various kinds of high-performance integrated LN devices can be demonstrated. A comprehensive summary of advances in LN photonics is provided. As LN photonics has experienced several decades of development, our review includes some of the typical bulk LN devices as well as recently developed thin film LN devices. In this way, readers may be inspired by a complete picture of the evolution of this technology. We first introduce the basic material properties of LN and several key processing technologies for fabricating photonics devices. After that, various kinds of functional devices based on different effects are summarized. Finally, we give a short summary and perspective of LN photonics. We hope this review can give readers more insight into recent advances in LN photonics and contribute to the further development of LN related research.
Wide-field mid-infrared hyperspectral imaging beyond video rate
Mid-infrared hyperspectral imaging has become an indispensable tool to spatially resolve chemical information in a wide variety of samples. However, acquiring three-dimensional data cubes is typically time-consuming due to the limited speed of raster scanning or wavelength tuning, which impedes real-time visualization with high spatial definition across broad spectral bands. Here, we devise and implement a high-speed, wide-field mid-infrared hyperspectral imaging system relying on broadband parametric upconversion of high-brightness supercontinuum illumination at the Fourier plane. The upconverted replica is spectrally decomposed by a rapid acousto-optic tunable filter, which records high-definition monochromatic images at a frame rate of 10 kHz based on a megapixel silicon camera. Consequently, the hyperspectral imager allows us to acquire 100 spectral bands over 2600-4085 cm −1 in 10 ms, corresponding to a refreshing rate of 100 Hz. Moreover, the angular dependence of phase matching in the image upconversion is leveraged to realize snapshot operation with spatial multiplexing for multiple spectral channels, which may further boost the spectral imaging rate. The high acquisition rate, wide-field operation, and broadband spectral coverage could open new possibilities for high-throughput characterization of transient processes in material and life sciences. Mid-infrared hyperspectral imaging is valuable for sample characterisation but suffers limited scanning rates. The authors develop such an imaging system based on parametric upconversion of supercontinuum illumination in the Fourier plane, enabling a 100-Hz acquisition rate of spectral datacubes.