Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
162
result(s) for
"Actinidia arguta"
Sort by:
Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq.: A Review of Phytochemistry and Pharmacology
by
Teng, Kun
,
Zhang, Haifeng
,
Zang, Hao
in
Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq
,
Amino acids
,
Antioxidants
2023
Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. The fruit is rich in vitamins, amino acids, and vitamin C, making it a nutritious and flavorful raw material for producing jam, canned food, and wine. The flowers yield volatile oils suitable for essential oil extraction. The leaves contain phenolic compounds and can be used for tea production. Additionally, the roots, stems, and leaves of A. arguta possess significant medicinal value, as they contain a wide array of active ingredients that exert multiple pharmacological and therapeutic effects. These effects include quenching thirst, relieving heat, stopping bleeding, promoting blood circulation, reducing swelling, dispelling wind, and alleviating dampness. Comprehensive information on A. arguta was collected from scientific databases covering the period from 1970 to 2023. The databases used for this review included Web of Science, PubMed, ProQuest, and CNKI. The objective of this review was to provide a detailed explanation of A. arguta from multiple perspectives, such as phytochemistry and pharmacological effects. By doing so, it aimed to establish a solid foundation and propose new research ideas for further exploration of the plant’s potential applications and industrial development. To date, a total of 539 compounds have been isolated and identified from A. arguta. These compounds include terpenoids, flavonoids, phenolics, phenylpropanoids, lignin, organic acids, volatile components, alkanes, coumarins, anthraquinones, alkaloids, polysaccharides, and inorganic elements. Flavonoids, phenolics, alkaloids, and polysaccharides are the key bioactive constituents of A. arguta. Moreover, phenolics and flavonoids in A. arguta exhibit remarkable antioxidant, anti-inflammatory, and anti-tumor properties. Additionally, they show promising potential in improving glucose metabolism, combating aging, reducing fatigue, and regulating the immune system. While some fundamental studies on A. arguta have been conducted, further research is necessary to enhance our understanding of its mechanism of action, quality evaluation, and compatibility mechanisms. A more comprehensive investigation is highly warranted to explore the mechanism of action and expand the range of drug resources associated with A. arguta. This will contribute to the current hot topics of anti-aging and anti-tumor drug research and development, thereby promoting its further development and utilization.
Journal Article
Effects of different fermentation methods on the quality of wines made from Actinidia argute
2024
This study used Actinidia arguta ‘Kuilv’ as raw material to produce wine by two different methods: whole pulp and clear juice fermentation. The basic physicochemical properties, nutrients, antioxidant capacity, volatile flavor compounds, and sensory evaluation of Actinidia arguta wine were detected. The results indicated that clear juice fermentation increased the ethanol content and color quality, and decreased the residual sugar content. Whole pulp fermentation reduced the total acid content and the total amount of organic acid and increased the pH value, antioxidant active ingredients, antioxidant activity, and the volatile flavor substances of the wine. High-performance liquid chromatography (HPLC) analysis showed that citric acid and quinic acid were the main organic acids in the wine. Headspace gas chromatography–ion mobility spectrometry (HS-GC–IMS) analysis detected 55 volatile flavor compounds in the wine, including 26 esters, 13 alcohols, 10 aldehydes, 3 ketones, 1 acid, 1 terpene, and 1 pyrazine. Fourteen key volatile flavor substances were identified based on P-value < 0.05 and VIP value > 1: 2-pentanone, isoamyl alcohol, propionaldehyde, ethyl isobutyrate, 4-methyl-1-pentanol, butanal, butyl acetate, 2-heptanone, ethyl isovalerate, acetal M, 3-methyl-3-buten-1-ol M, ethyl butyrate, 1-penten-3-ol, octanal.
Journal Article
Effects of bleeding of Actinidia arguta (Sieb. & Zucc) Planch. ex miq. on its plant growth, physiological characteristics and fruit quality
by
Dong, Kun
,
Ma, Le
,
Jiang, Yaxuan
in
Actinidia arguta
,
Actinidia arguta Sieb. & Zucc. Planch. ex Miq
,
Agriculture
2023
Bleeding is as particularly a serious phenomenon in
Actinidia arguta
and has important effects on this plant’s growth and development. Here we used
A
.
arguta
to study the effects of bleeding on the growth and development of leaves and fruits after a bleeding episode. We detect and analyze physiological indices of leaves and fruit after bleeding. The result revealed that the relative electrical conductivity and malondialdehyde (MDA) of leaves increased in treatment. Nitro blue tetrazolium chloride (NBT) and 3,3-diaminobenzidine (DAB) staining revealed the accumulation of reactive oxygen species (ROS) in leaves after bleeding. The chlorophyll content and photosynthetic parameter of plants were also decreased. In fruits, pulp and seed water content decreased after the damage, as did fruit vitamin C (Vc), soluble sugar content, and soluble solids content (SSC); the titratable acid content did not change significantly. We therefore conclude that bleeding affects the physiological indices of
A
.
arguta
. Our study provides a theoretical basis for understanding the physiological changes of
A
.
arguta
after bleeding episodes and laying a timely foundation for advancing research on
A. arguta
bleeding and long-term field studies should be executed in order to gain insights into underlying mechanisms.
Journal Article
Gut Microbiota Combined with Serum Metabolomics to Investigate the Hypoglycemic Effect of Actinidia arguta Leaves
2023
Actinidia arguta leaves (AAL) are an excellent source of bioactive components for the food industry and possess many functional properties. However, the hypoglycemic effect and mechanism of AAL remain unclear. The aim of this work was to investigate the potential hypoglycemic effect of AAL and explore its possible mechanism using 16S rRNA sequencing and serum metabolomics in diabetic mice induced by high-fat feeding in combination with streptozotocin injection. A total of 25 flavonoids from AAL were isolated and characterized, and the contents of the extract from the AAL ranged from 0.14 mg/g DW to 8.97 mg/g DW. The compound quercetin (2) had the highest content of 8.97 ± 0.09 mg/g DW, and the compound kaempferol-3-O-(2′-O-D-glucopyl)-β-D-rutinoside (12) had the lowest content of 0.14 ± 0.01 mg/g DW. In vivo experimental studies showed that AAL reduced blood glucose and cholesterol levels, improved insulin sensitivity, and ameliorated oxidative stress and liver and kidney pathological damage. In addition, gut microbiota analysis found that AAL significantly reduced the F/B ratio, enriched the beneficial bacteria Bacteroides and Bifidobacterium, and inhibited the harmful bacteria Lactobacillus and Desulfovibrio, thereby playing an active role in intestinal imbalance. In addition, metabolomics analysis showed that AAL could improve amino acid metabolism and arachidonic acid metabolism, thereby exerting a hypoglycemic effect. This study confirmed that AAL can alleviate type 2 diabetes mellitus (T2DM) by regulating intestinal flora and interfering with related metabolic pathways, providing a scientific basis for its use as a dietary supplement and for further exploration of the mechanism of AAL against T2DM.
Journal Article
Metabolomic and transcriptomic exploration of the uric acid-reducing flavonoids biosynthetic pathways in the fruit of Actinidia arguta Sieb. Zucc
by
Irfan, Muhammad
,
Zhang, Wenge
,
Hao, Chunhui
in
Actinidia arguta
,
Actinidia arguta Sieb.Zucc
,
Animal models
2022
Flavonoids from Actinidia arguta Sieb. Zucc. can reduce uric acid in mice. However, the molecular basis of its biosynthesis is still unclear. In this paper, we used a combination of extensively targeted metabolomics and transcriptomics analysis to determine the types and differences of flavonoids in the fruit ripening period (August to September) of two main cultivated varieties in northern China. The ethanol extract was prepared, and the potential flavonoids of Chrysin (Flavone1), Rutin (Flavone2), and Daidzein (Flavone3) in Actinidia arguta Sieb. Zucc. were separated and purified by HPD600 macroporous adsorption resin and preparative liquid chromatography. The structure was identified by MS-HPLC, and the serum uric acid index of male Kunming mice was determined by an animal model test.125 flavonoids and 50 differentially regulated genes were identified. The contents of UA (uric acid), BUN (urea nitrogen), Cr (creatinine), and GAPDH in mouse serum and mouse liver glycogen decreased or increased in varying degrees. This paper reveals the biosynthetic pathway of uric acid-reducing flavonoids in the fruit of Actinidia arguta Sieb. Zucc. , a major cultivar in northern China, provides valuable information for the development of food and drug homologous functional foods.
Journal Article
Metabolomic and Transcriptomic Analysis of Flavonoid Biosynthesis in Two Main Cultivars of Actinidia arguta Sieb.Zucc. Grown in Northern China
by
Irfan, Muhammad
,
Jiang, Hui
,
Sun, Jun
in
Actinidia arguta
,
Actinidia arguta Sieb.Zucc
,
Biosynthesis
2022
Actinidia arguta Sieb.Zucc. is a fruit that is rich in flavonoids. Nevertheless, details of flavonoid formation and the potential mechanism behind flavonoid biosynthesis have not previously been reported. In order to explore the biosynthetic regulation mechanism of flavonoids in A. arguta Sieb.Zucc., we conducted a combination of extensive targeted metabolite analysis and analyzed transcriptomes to determine the flavonoids present and the genes bound up with flavonoid biosynthesis in the two main cultivated varieties of A. arguta Sieb.Zucc. in Northern China. The maturity period is from August to September. A total of 118 flavonoids were found in fruits. Among them, 39 flavonoids were accumulated at significant levels after fruit ripening. Transcriptome analysis indicated that most flavonoid biosynthesis structural genes and certain regulatory genes exhibited differential expression between the two varieties. Correlation analysis of transcriptome and metabolite profiles showed that the ways of expression of 21 differentially expressed genes related to structure and regulation between the 2 varieties were more highly correlated with 7 flavonoids after fruit ripening. These results contribute to the development of A. arguta Sieb.Zucc. as a food and drug homologous functional food.
Journal Article
Valorization of Kiwiberry Leaves Recovered by Ultrasound-Assisted Extraction for Skin Application: A Response Surface Methodology Approach
by
Silva, Ana Margarida
,
Costa, Paulo C.
,
Pinto, Diana
in
Acids
,
Actinidia arguta
,
Actinidia arguta leaves
2022
This study aims to evaluate the optimal ultrasound-assisted extraction (UAE) conditions of antioxidants polyphenols from Actinidia arguta (Siebold & Zucc.) Planch. Ex Miq. (kiwiberry) leaves using a response surface methodology (RSM). The effects of solid:liquid ratio (2.5–10.0% w/v), time (20–60 min), and intensity (30–70 W/m2) on the total phenolic content (TPC) and antioxidant/antiradical activities were investigated. The optimal UAE conditions were achieved using a solid:liquid ratio of 10% (w/v) and an ultrasonic intensity of 30 W/m2 for 31.11 min. The results demonstrated that the optimal extract showed a high TPC (97.50 mg of gallic acid equivalents (GAE)/g dw) and antioxidant/antiradical activity (IC50 = 249.46 µg/mL for ABTS assay; IC50 = 547.34 µg/mL for DPPH assay; 1440.13 µmol of ferrous sulfate equivalents (FSE)/g dw for ferric reducing antioxidant power (FRAP)) as well as a good capacity to scavenge superoxide and hypochlorous acid (respectively, IC50 = 220.13 μg/mL and IC50 =10.26 μg/mL), which may be related with the 28 phenolic compounds quantified. The in vitro cell assay demonstrated that the optimal extract did not decrease the keratinocytes’ (HaCaT) viability, while the fibroblasts’ (HFF-1) viability was greater than 70.63% (1000 µg/mL). This study emphasizes the great potential of kiwiberry leaves extracted by UAE for skin application.
Journal Article
Development and Characterization of Microparticles with Actinidia arguta Leaves Extract by Spray-Drying: A New Mind-Set Regarding Healthy Compounds for Oral Mucositis
by
Costa, Paulo C.
,
Dall’Acqua, Stefano
,
Teixeira, Filipa
in
Actinidia arguta
,
Actinidia arguta leaves
,
antioxidant compounds
2023
Actinidia arguta leaves have gained notoriety over the past years due to their rich bioactive composition with human pro-healthy effects, particularly in relation to antioxidants. Nevertheless, antioxidants are well known for their chemical instability, making it necessary to develop suitable delivery systems, such as microparticles, to provide protection and ensure a controlled release. The aim of this work was to produce polymeric particles of A. arguta leaves extract by spray-drying that may improve the oral mucositis condition. Microparticles were characterized by size, shape, antioxidant/antiradical activities, swelling capacity, moisture content, and effect on oral cells (TR146 and HSC-3) viability, with the aim to assess their potential application in this oral condition. The results attested the microparticles’ spherical morphology and production yields of 41.43% and 36.40%, respectively, for empty and A. arguta leaves extract microparticles. The A. arguta leaves extract microparticles obtained the highest phenolic content (19.29 mg GAE/g) and antioxidant/antiradical activities (FRAP = 81.72 µmol FSE/g; DPPH = 4.90 mg TE/g), being perceived as an increase in moisture content and swelling capacity. No differences were observed between empty and loaded microparticles through FTIR analysis. Furthermore, the exposure to HSC-3 and TR146 did not lead to a viability decrease, attesting their safety for oral administration. Overall, these results highlight the significant potential of A. arguta leaves extract microparticles for applications in the pharmaceutical and nutraceutical industries.
Journal Article
Comprehensive Evaluation of Ten Actinidia arguta Wines Based on Color, Organic Acids, Volatile Compounds, and Quantitative Descriptive Analysis
by
Sun, Yining
,
Wang, Yue
,
He, Yanli
in
Actinidia arguta
,
Actinidia arguta wine
,
Alcoholic beverages
2023
Actinidia arguta wine is a low-alcoholic beverage brewed from A. arguta with a unique flavor and sweet taste. In this study, the basic physicochemical indicators, color, organic acid, and volatile aroma components of wines made from the A. arguta varieties ‘Kuilv’, ‘Fenglv’, ‘Jialv’, ‘Wanlv’, ‘Xinlv’, ‘Pinglv’, ‘Lvbao’, ‘Cuiyu’, ‘Tianxinbao’, and ‘Longcheng No.2’ were determined, and a sensory evaluation was performed. The findings show that ‘Tianxinbao’ produced the driest extract (49.59 g/L), ‘Kuilv’ produced the most Vitamin C (913.46 mg/L) and total phenols (816.10 mg/L), ‘Jialv’ produced the most total flavonoids (477.12 mg/L), and ‘Cuiyu’ produced the most tannins (4.63 g/L). We analyzed the color of the A. arguta wines based on CIEL*a*b* parameters and found that the ‘Kuilv’ and ‘Longcheng No.2’ wines had the largest L* value (31.65), the ‘Pinglv’ wines had the greatest a* value (2.88), and the ‘Kuilv’ wines had the largest b* value (5.08) and C*ab value (5.66) of the ten samples. A total of eight organic acids were tested in ten samples via high-performance liquid chromatography (HPLC), and we found that there were marked differences in the organic acid contents in different samples (p < 0.05). The main organic acids were citric acid, quinic acid, and malic acid. The aroma description of a wine is one of the keys to its quality. A total of 51 volatile compounds were identified and characterized in ten samples with headspace gas chromatography-ion mobility spectrometry, including 24 esters, 12 alcohols, 9 aldehydes, 3 aldehydes, 2 terpenes, and 1 acid, with the highest total volatile compound content in ‘Fenglv’. There were no significant differences in the types of volatile compounds, but there were significant differences in the contents (p < 0.05). An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) showed that ethyl butanoate, ethyl pentanoate, ethyl crotonate, ethyl isobutyrate, butyl butanoate, 2-methylbutanal, ethyl isovalerate, and ethyl hexanoate were the main odorant markers responsible for flavor differences between all the A. arguta wines. Sensory evaluation is the most subjective and effective way for consumers to judge A. arguta wine quality. A quantitative descriptive analysis (QDA) of the aroma profiles of ten grapes revealed that the ‘fruity’ and ‘floral’ descriptors are the main and most essential parts of the overall flavor of A. arguta wines. ‘Tianxinbao’ had the highest total aroma score. The flavor and quality of A. arguta wines greatly depend on the type and quality of the A. arguta raw material. Therefore, high-quality raw materials can improve the quality of A. arguta wines. The results of the study provide a theoretical basis for improving the quality of A. arguta wines and demonstrate the application prospects of HS-GC-IMS in detecting A. arguta wine flavors.
Journal Article
Antifatigue and increasing exercise performance of Actinidia arguta crude alkaloids in mice
by
Liu, Changjiang
,
Liu, Yangyang
in
Actinidia
,
Actinidia arguta
,
Actinidia arguta crude alkaloids
2016
Actinidia arguta (Siebold et Zucc.) Planch. ex. Miq. is one of the most recently domesticated fruit species with increasing commercial production worldwide. It is a well-known traditional Chinese medicine and is used to reduce blood glucose and treat atopic dermatitis. In addition, it possesses antioxidant, anticancer, and antiallergic properties. In this study, we investigated the physical antifatigue and exercise performance effects of A. arguta crude alkaloids (AACA) extracted with 70% ethanol. Four groups of male Kunming mice (n = 16) were orally administered AACA at doses of 0 mg/kg/d (vehicle), 50 mg/kg/d (AACA-50), 100 mg/kg/d (AACA-100), or 200 mg/kg/d (AACA-200) for 28 days. The effect of AACA treatment on exercise performance was studied using the forelimb grip strength experiment and by the measurement of the weight-loaded swimming time. The antifatigue effect is evaluated based on fatigue-associated biochemical parameters, hepatic and muscular glycogen levels, and changes in the morphology of transverse and longitudinal sections of skeletal muscle. The results showed that AACA could elevate the endurance and grip strength in mice. The exhaustive swimming time of the AACA-50, AACA-100, and AACA-200 groups was significantly (p < 0.05) increased compared with the vehicle. The swimming time of the AACA-100 group was the longest among all groups studied. Mice in the AACA-treated groups had decreased levels of lactate, ammonia, and creatine kinase after a physical challenge compared with the vehicle group. The tissue glycogen, an important energy source during exercise, significantly increased with AACA. The morphology of transverse and longitudinal sections of skeletal muscle did not change in the vehicle group. Overall, these findings suggest that AACA possesses antifatigue effects and increases exercise performance in mice. Therefore, A. arguta may be developed as an antifatigue dietary supplement in the category of functional foods.
[Display omitted]
Journal Article