Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
267 result(s) for "Actinobacteria - enzymology"
Sort by:
Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism
The efficacy of l -dopa treatment for Parkinson's disease is hugely variable between individuals, depending on the composition of their microbiota. l -Dopa is decarboxylated into active dopamine, but if the gut microbiota metabolize l -dopa before it crosses the blood-brain barrier, medication is ineffective. Maini Rekdal et al. found that different species of bacterium are involved in l -dopa metabolism (see the Perspective by O'Neill). Tyrosine decarboxylase (TDC) from Enterococcus faecalis and dopamine dehydroxylase (Dadh) from Eggerthella lenta A2 sequentially metabolized l -dopa into m -tyramine. The microbial l -dopa decarboxylase can be inactivated by ( S )-α-fluoromethyltyrosine (AFMT), which indicates possibilities for developing combinations of Parkinson's drugs to circumvent microbial inactivation. Science , this issue p. eaau6323 ; see also p. 1030 An interspecies metabolic pathway allows human gut bacteria to metabolize the Parkinson’s drug levodopa. The human gut microbiota metabolizes the Parkinson’s disease medication Levodopa ( l -dopa), potentially reducing drug availability and causing side effects. However, the organisms, genes, and enzymes responsible for this activity in patients and their susceptibility to inhibition by host-targeted drugs are unknown. Here, we describe an interspecies pathway for gut bacterial l -dopa metabolism. Conversion of l -dopa to dopamine by a pyridoxal phosphate-dependent tyrosine decarboxylase from Enterococcus faecalis is followed by transformation of dopamine to m -tyramine by a molybdenum-dependent dehydroxylase from Eggerthella lenta . These enzymes predict drug metabolism in complex human gut microbiotas. Although a drug that targets host aromatic amino acid decarboxylase does not prevent gut microbial l -dopa decarboxylation, we identified a compound that inhibits this activity in Parkinson’s patient microbiotas and increases l -dopa bioavailability in mice.
An engineered PET depolymerase to break down and recycle plastic bottles
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150–200 million tons accumulate in landfill or in the natural environment 2 . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging 3 . The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties 4 . Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units—which reduce chain mobility—PET is a polyester that is extremely difficult to hydrolyse 5 . Several PET hydrolase enzymes have been reported, but show limited productivity 6 , 7 . Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme 8 , 9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme 10 ) and related improved variants 11 – 14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles.
Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution
Actinobacteria, a large group of Gram-positive bacteria, secrete a wide range of extracellular enzymes involved in the degradation of organic compounds and biopolymers including the ubiquitous aminopolysaccharides chitin and chitosan. While chitinolytic enzymes are distributed in all kingdoms of life, actinobacteria are recognized as particularly good decomposers of chitinous material and several members of this taxon carry impressive sets of genes dedicated to chitin and chitosan degradation. Degradation of these polymers in actinobacteria is dependent on endo- and exo-acting hydrolases as well as lytic polysaccharide monooxygenases. Actinobacterial chitinases and chitosanases belong to nine major families of glycosyl hydrolases that share no sequence similarity. In this paper, the distribution of chitinolytic actinobacteria within different ecosystems is examined and their chitinolytic machinery is described and compared to those of other chitinolytic organisms.
Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria
A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.
Architecture of the mycobacterial type VII secretion system
Host infection by pathogenic mycobacteria, such as Mycobacterium tuberculosis , is facilitated by virulence factors that are secreted by type VII secretion systems 1 . A molecular understanding of the type VII secretion mechanism has been hampered owing to a lack of three-dimensional structures of the fully assembled secretion apparatus. Here we report the cryo-electron microscopy structure of a membrane-embedded core complex of the ESX-3/type VII secretion system from Mycobacterium smegmatis . The core of the ESX-3 secretion machine consists of four protein components—EccB3, EccC3, EccD3 and EccE3, in a 1:1:2:1 stoichiometry—which form two identical protomers. The EccC3 coupling protein comprises a flexible array of four ATPase domains, which are linked to the membrane through a stalk domain. The domain of unknown function (DUF) adjacent to the stalk is identified as an ATPase domain that is essential for secretion. EccB3 is predominantly periplasmatic, but a small segment crosses the membrane and contacts the stalk domain. This suggests that conformational changes in the stalk domain—triggered by substrate binding at the distal end of EccC3 and subsequent ATP hydrolysis in the DUF—could be coupled to substrate secretion to the periplasm. Our results reveal that the architecture of type VII secretion systems differs markedly from that of other known secretion machines 2 , and provide a structural understanding of these systems that will be useful for the design of antimicrobial strategies that target bacterial virulence. A cryo-EM structure of a membrane-embedded core complex of the ESX-3/type VII secretion system from Mycobacterium smegmatis is reported, providing insights into the mechanisms by which virulence factors are secreted by these bacteria.
Variations of soil metal content, soil enzyme activity and soil bacterial community in Rhododendron delavayi natural shrub forest at different elevations
Background Rhododendron delavayi is a natural shrub that is distributed at different elevations in the karst region of Bijie, China, and that has an important role in preventing land degradation in this region. In this study, we determined the soil mineral element contents and soil enzyme activities. The composition of the soil bacterial community of R. delavayi at three elevations (1448 m, 1643 m, and 1821 m) was analyzed by high-throughput sequencing, and the interrelationships among the soil bacterial communities, mineral elements, and enzyme activities were determined. Results The Shannon index of the soil bacterial community increased and then decreased with increasing elevation and was highest at 1643 m. Elevations increased the number of total nodes and edges of the soil bacterial community network, and more positive correlations at 1821 m suggested stronger intraspecific cooperation. Acidobacteria, Actinobacteria and Proteobacteria were the dominant phyla at all three elevations. The Mantel test and correlation analysis showed that Fe and soil urease significantly affected bacterial communities at 1448 m; interestingly, Chloroflexi was positively related to soil urease at 1448 m, and Actinobacteria was positively correlated with Ni and Zn at 1821 m. Fe and soil urease significantly influenced the bacterial communities at lower elevations, and high elevation (1821 m) enhanced the positive interactions of the soil bacteria, which might be a strategy for R. delavayi to adapt to high elevation environments. Conclusion Elevation significantly influenced the composition of soil bacterial communities by affecting the content of soil mineral elements and soil enzyme activity.
novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190
Only two polyethylene glycol terephthalate (PET)-degrading enzymes have been reported, and their mechanism for the biochemical degradation of PET remains unclear. To identify a novel PET-degrading enzyme, a putative cutinase gene (cut190) was cloned from the thermophile Saccharomonospora viridis AHK190 and expressed in Escherichia coli Rosetta-gami B (DE3). Mutational analysis indicated that substitution of Ser226 with Pro and Arg228 with Ser yielded the highest activity and thermostability. The Ca²⁺ion enhanced the enzyme activity and thermostability of the wild-type and mutant Cut190. Circular dichroism suggested that the Ca²⁺changes the tertiary structure of the Cut190 (S226P/R228S), which has optimal activity at 65–75 °C and pH 6.5–8.0 in the presence of 20 % glycerol. The enzyme was stable over a pH range of 5–9 and at temperatures up to 65 °C for 24 h with 40 % activity remaining after incubation for 1 h at 70 °C. The Cut190 (S226P/R228S) efficiently hydrolyzed various aliphatic and aliphatic-co-aromatic polyester films. Furthermore, the enzyme degraded the PET film above 60 °C. Therefore, Cut190 is the novel-reported PET-degrading enzyme with the potential for industrial applications in polyester degradation, monomer recycling, and PET surface modification. Thus, the Cut190 will be a useful tool to elucidate the molecular mechanisms of the PET degradation, Ca²⁺activation, and stabilization.
An electron transfer path connects subunits of a mycobacterial respiratory supercomplex
Respiratory complexes are massive, membrane-embedded scaffolds that position redox cofactors so as to permit electron transfer coupled to the movement of protons across a membrane. Gong et al. used cryo–electron microscopy to determine a structure of a stable assembly of mycobacterial complex III–IV, in which a complex III dimer is sandwiched between two complex IV monomers. A potential direct electron transfer path stretches from the quinone oxidizing centers in complex III to the oxygen reduction centers in complex IV. A loosely associated superoxide dismutase may play a role in detoxifying superoxide produced from uncoupled oxygen reduction. Science , this issue p. eaat8923 A mycobacterial respiratory supercomplex forgoes soluble electron carriers and associates with superoxide dismutase. We report a 3.5-angstrom-resolution cryo–electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
Microbial catabolism of sterols: focus on the enzymes that transform the sterol 3β-hydroxy-5-en into 3-keto-4-en
Abstract An overview on the microbial sterol catabolism is described with a focus on the catabolic step of the 3β-hydroxy-5-en structure. Cholesterol oxidase transforms this structure into the corresponding 3-keto-4-en feature, and thus initiates the sterol molecule catabolism. The oxidase has been found in a large number of microorganisms, especially in Actinobacteria as species of Rhodococcus and Streptomyces. Other Actinobacteria as species of Mycobacterium and Nocardia possess NAD(P)-dependent dehydrogenase for this catabolic step. In Rhodococcus jostii, oxidation of the C26 of the sterol side chain is the initiating step. The resulting stenone or sterol-C26-oic acid is then catabolized according to two subpathways: cleavage of the sterol side chain and degradation of the steroid nucleus. Divergent items concerned with the enzymes that transform the sterol 3β-hydroxy-5-en are discussed. Microbial sterol catabolism is initiated by conversion of 3β-ol-5-en into the corresponding 3-keto-4-en feature by either cholesterol oxidase requiring molecular oxygen or a NAD(P)-dependent dehydrogenase.
Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase
The actinobacterial acI lineage is among the most successful and ubiquitous freshwater bacterioplankton found on all continents, often representing more than half of all microbial cells in the lacustrine environment and constituting multiple ecotypes. However, stably growing pure cultures of the acI lineage have not been established despite various cultivation efforts based on ecological and genomic studies on the lineage, which is in contrast to the ocean from which abundant microorganisms such as Prochlorococcus , Pelagibacter , and Nitrosopumilus have been isolated. Here, we report the first two pure cultures of the acI lineage successfully maintained by supplementing the growth media with catalase. Catalase was critical for stabilizing the growth of acI strains irrespective of the genomic presence of the catalase-peroxidase ( katG ) gene. The two strains, representing two novel species, displayed differential phenotypes and distinct preferences for reduced sulfurs and carbohydrates, some of which were difficult to predict based on genomic information. Our results suggest that culture of previously uncultured freshwater bacteria can be facilitated by a simple catalase-supplement method and indicate that genome-based metabolic prediction can be complemented by physiological analyses.