Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,836 result(s) for "Action observation"
Sort by:
Observing walking with asymmetric treadmill belt speeds induces stronger activation of the action observation network than normal walking
Observing the actions of others activates the action observation network (AON). Although previous studies have reported that motor experience and visual familiarity with an observed action can modulate the AON activity, the response of the AON to the observation of unusual walking patterns remains unclear. Therefore, this study aimed to investigate the brain activity induced by observing walking in a split-belt condition, where the left and right treadmill belt speeds differ. We examined the brain activity during the observation of video clips showing normal walking under a tied condition (the same left and right treadmill speeds) as well as walking during the initial and late periods of a split-belt condition using functional magnetic resonance imaging in 19 healthy adults. The step lengths of the actor walking in the video clips were asymmetric during the initial period of the split-belt condition and nearly symmetric during the tied condition and late period of the split-belt condition. Observing the walking video clips activated broad regions of the occipito-temporo-parietal and frontal cortices, irrespective of the clip conditions. The contrasts between the conditions revealed that observing walking in the initial and late periods of the split-belt condition induced stronger activation in a subset of the AON than in the tied condition. These results suggest that observing unusual walking patterns under asymmetric speed condition induces a stronger AON activity than normal walking.
Photovoice handbook for social workers : method, practicalities and possibilities for social change
Built on strong theoretical foundations and grounded in ethical principles, Jarldorn assesses Photovoice as an arts-based approach that provides a valuable mechanism for social workers to engage people in participatory action research, with the potential to influence policy and public opinion. Positioning Photovoice as a method aligned with feminist and radical social work perspectives, the author draws upon her research project which used Photovoice with former prisoners to demonstrate the transformative potential of participatory methods. Photovoice Handbook for Social Workers is intended to be a useful, hands-on resource, combining the importance of theory and the practicalities of doing action research.
The relationship between drop vertical jump action‐observation brain activity and kinesiophobia after anterior cruciate ligament reconstruction: A cross‐sectional fMRI study
Background Injury and reconstruction of anterior cruciate ligament (ACL) result in central nervous system alteration to control the muscles around the knee joint. Most individuals with ACL reconstruction (ACLR) experience kinesiophobia which can prevent them from returning to activity and is associated with negative outcomes after ACLR. However, it is unknown if kinesiophobia alters brain activity after ACL injury. Objectives To compare brain activity between an ACLR group and matched uninjured controls during an action‐observation drop vertical jump (AO‐DVJ) paradigm and to explore the association between kinesiophobia and brain activity in the ACLR group. Methods This cross‐sectional study enrolled 26 individuals, 13 with ACLR (5 males and 8 females, 20.62 ± 1.93 years, 1.71 ± 0.1 m, 68.42 ± 14.75 kg) and 13 matched uninjured controls (5 males and 8 females, 22.92 ± 3.17 years, 1.74 ± 0.10 m, 70.48 ± 15.38 kg). Individuals were matched on sex and activity level. Participants completed the Tampa Scale of Kinesiophobia‐11 (TSK‐11) to evaluate the level of movement‐related fear. To assay the brain activity associated with a functional movement, the current study employed an action‐observation/motor imagery paradigm during functional magnetic resonance imaging (fMRI). Results The ACLR group had lower brain activity in the right ventrolateral prefrontal cortex relative to the uninjured control group. Brain activity of the left cerebellum Crus I and Crus II, the right cerebellum lobule IX, amygdala, middle temporal gyrus, and temporal pole were positively correlated with TSK‐11 scores in the ACLR group. Conclusion Brain activity for the AO‐DVJ paradigm was different between the ACLR group and uninjured controls. Secondly, in participants with ACLR, there was a positive relationship between TSK‐11 scores and activity in brain areas engaged in fear and cognitive processes during the AO‐DVJ paradigm. Brain activity for the action‐observation drop vertical jump paradigm was different between the ACLR group and uninjured controls. Secondly, in participants with ACLR, there was a positive relationship between TSK‐11 scores and activity in brain areas engaged in fear and cognitive processes during the action‐observation drop vertical jump paradigm.
The role of observers' gaze behaviour when watching object manipulation tasks: predicting and evaluating the consequences of action
When watching an actor manipulate objects, observers, like the actor, naturally direct their gaze to each object as the hand approaches and typically maintain gaze on the object until the hand departs. Here, we probed the function of observers' eye movements, focusing on two possibilities: (i) that observers' gaze behaviour arises from processes involved in the prediction of the target object of the actor's reaching movement and (ii) that this gaze behaviour supports the evaluation of mechanical events that arise from interactions between the actor's hand and objects. Observers watched an actor reach for and lift one of two presented objects. The observers' task was either to predict the target object or judge its weight. Proactive gaze behaviour, similar to that seen in self-guided action–observation, was seen in the weight judgement task, which requires evaluating mechanical events associated with lifting, but not in the target prediction task. We submit that an important function of gaze behaviour in self-guided action observation is the evaluation of mechanical events associated with interactions between the hand and object. By comparing predicted and actual mechanical events, observers, like actors, can gain knowledge about the world, including information about objects they may subsequently act upon.
Multimodal Drumming Education Tool in Mixed Reality
First-person VR- and MR-based Action Observation research has thus far yielded both positive and negative findings in studies observing such tools’ potential to teach motor skills. Teaching drumming, particularly polyrhythms, is a challenging motor skill to learn and has remained largely unexplored in the field of Action Observation. In this contribution, a multimodal tool designed to teach rudimental and polyrhythmic drumming was developed and tested in a 20-subject study. The tool presented subjects with a first-person MR perspective via a head-mounted display to provide users with visual exposure to both virtual content and their physical surroundings simultaneously. When compared against a control group practicing via video demonstrations, results showed increased rhythmic accuracy across four exercises. Specifically, a difference of 239 ms (z-ratio = 3.520, p < 0.001) was found between the timing errors of subjects who practiced with our multimodal mixed reality development compared to subjects who practiced with video, demonstrating the potential of such affordances. This research contributes to ongoing work in the fields of Action Observation and Mixed Reality, providing evidence that Action Observation techniques can be an effective practice method for drumming.
Aphasia rehabilitation based on mirror neuron theory: a randomized-block-design study of neuropsychology and functional magnetic resonance imaging
When watching someone performs an action, mirror neurons are activated in a way that is very similar to the activation that occurs when actually performing that action. Previous single-sample case studies indicate that hand-action observation training may lead to activation and remodeling of mirror neuron systems, which include important language centers, and may improve language function in aphasia patients. In this randomized-block-design experiment, we recruited 24 aphasia patients from, Zhongda Hospital, Southeast University, China. The patients were divided into three groups where they underwent hand-action observation and repetition, dynamic-object observation and repetition, or conventional speech therapy. Training took place 5 days per week, 35 minutes per day, for 2 weeks. We assessed language function via picture naming tests for objects and actions and the Western Aphasia Battery. Among the participants, one patient, his wife and four healthy student volunteers underwent functional magnetic resonance imaging to analyze changes in brain activation during hand-action observation and dynamic-object observation. Results demonstrated that, compared with dynamic-object observation, hand-action observation led to greater performance with respect to the aphasia quotient and affiliated naming sub-tests and a greater Western Aphasia Battery test score. The overall effect was similar to that of conventional aphasia training, yet hand-action observation had advantages compared with conventional training in terms of vocabulary extraction and spontaneous speech. Thus, hand-action observation appears to more strongly activate the mirror neuron system compared with dynamic-object observation. The activated areas included Broca's area, Wernicke's area, and the supramarginal gyrus. These results suggest that hand-action observation combined with repetition might better improve language function in aphasia patients compared with dynamic-object observation combined with repetition. The therapeutic mechanism of this intervention may be associated with activation of additional mirror neuron systems, and may have implications for the possible repair and remodeling of damaged nerve networks. The study protocol was approved by the Ethical Committee of Nanjing Medical University, China (approval number: 2011-SRFA-086) on March 11, 2011. This trial has been registered in the ISRCTN Registry (ISRCTN84827527).
Can action observation modulate balance performance in healthy subjects?
Background Action observation activates brain motor networks and, if followed by action imitation, it facilitates motor learning and functional recovery in patients with both neurological and musculoskeletal disorders. To date, few studies suggested that action observation plus imitation can improve balance skills; however, it is still unclear whether the simple repetitive observation of challenging balance tasks is enough to modify postural control. Thus, the primary aim of this study was to investigate whether repetitive action observation of balance exercises without imitation has the potential to improve balance performance; the secondary aim was to estimate the different training effects of action observation, action observation plus imitation and balance training relative to a control condition in healthy subjects. Methods Seventy-nine healthy young adults were randomly assigned to 4 groups: action observation, action observation plus imitation, balance training and control. The first three groups were trained for about 30 minutes every day for three weeks, whereas the control group received no training. Center of pressure path length and sway area were evaluated on a force platform at baseline and after training using posturographic tests with eyes open and closed. Results As expected, both action observation plus imitation and balance training groups compared to the control group showed balance improvements, with a medium to large effect size performing balance tasks with eyes open. Action observation without imitation group showed a balance improvement with eyes open, but without a significant difference relative to the control group. Conclusions Both action observation plus imitation and balance training have similar effects in improving postural control in healthy young subjects. Future studies on patients with postural instability are necessary to clarify whether AOT can induce longer lasting effects. Action observation alone showed a trend toward improving postural control in healthy subjects, suggesting the possibility to study its effects in temporarily immobilized diseased subjects.
Motor Imagery during Action Observation: A Brief Review of Evidence, Theory and Future Research Opportunities
Motor imagery (MI) and action observation (AO) have traditionally been viewed as two separate techniques, which can both be used alongside physical practice to enhance motor learning and rehabilitation. Their independent use has largely been shown to be effective, and there is clear evidence that the two processes can elicit similar activity in the motor system. Building on these well-established findings, research has now turned to investigate the effects of their combined use. In this article, we first review the available neurophysiological and behavioral evidence for the effects of combined action observation and motor imagery (AO+MI) on motor processes. We next describe a conceptual framework for their combined use, and then discuss several areas for future research into AO+MI processes. In this review, we advocate a more integrated approach to AO+MI techniques than has previously been adopted by movement scientists and practitioners alike. We hope that this early review of an emergent body of research, along with a related set of research questions, can inspire new work in this area. We are optimistic that future research will further confirm if, how, and when this combined approach to AO+MI can be more effective in motor learning and rehabilitation settings, relative to the more traditional application of MI or AO independently.