Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,287
result(s) for
"Active distribution system"
Sort by:
Review and prospect of active distribution system planning
by
LI, Yuanxi
,
GAO, Hongjun
,
LIU, Junyong
in
Active distribution system (ADS) planning
,
Active network management (ANM)
,
Demand response (DR)
2015
The approach to planning, design and operation of distribution networks have significantly changed due to the proliferation of distributed energy resources (DERs) together with load growth, energy storage technology advancements and increased consumer expectations. Planning of active distribution systems (ADS) has been a very hot topic in the 21st Century. A large number of studies have been done on ADS planning. This paper reviews the state of the art of current ADS planning. Firstly, the influences of DERs on the ADS planning are addressed. Secondly, the characteristics and objectives of ADS planning are summarized. Then, up to date planning model and some related research are highlighted in different areas such as forecasting load and distributed generation, mathematical model of ADS planning and solution algorithms. Finally, the paper explores some directions of future research on ADS planning including planning collaboratively with all elements combined in ADS, taking into account of joint planning in secondary system, coordinating goals among different layers, integrating detailed operation simulations and regular performance based reviews into planning, and developing advanced planning tools.
Journal Article
Comprehensive power-supply planning for active distribution system considering cooling, heating and power load balance
by
SHEN, Xinwei
,
HAN, Yingduo
,
ZHENG, Jinghong
in
Active distribution system
,
Combined cooling
,
Electrical Machines and Networks
2015
An active distribution system power-supply planning model considering cooling, heating and power load balance is proposed in this paper. A regional energy service company is assumed to be in charge of the investment and operation for the system in the model. The expansion of substations, building up distributed combined cooling, heating and power (CCHP), gas heating boiler (GHB) and air conditioner (AC) are included as investment planning options. In terms of operation, the load scenarios are divided into heating, cooling and transition periods. Also, the extreme load scene is included to assure the power supply reliability of the system. Numerical results demonstrate the effectiveness of the proposed model and illustrate the economic benefits of applying distributed CCHP in regional power supply on investment and operation.
Journal Article
Active energy management strategies for active distribution system
by
LIU, Junyong
,
XIANG, Yue
,
YANG, Wei
in
Active distribution system
,
Active management
,
Electrical Machines and Networks
2015
Active energy management is an effective way to realize the flexible utilization of distributed energy resources to suit the characteristics of active distribution system. Advanced active energy management strategies need to be designed to coordinate the optimization of ‘generation, network, load’. An active management model is built for the local distribution system integrated with the generation curtailment mechanism and the charging/discharging management of plug-in electric vehicles. Furthermore, different strategies based on the energy management model are presented. The model and strategies are tested and discussed in a modified distribution system, and the impacts with different load profiles are also analyzed.
Journal Article
A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches
by
Zhang, Weige
,
Jiang, Jiuchun
,
Wang, Wei
in
active distribution system
,
distributed energy resources
,
distribution network planning
2017
Due to the widespread deployment of distributed energy resources (DERs) and the liberalization of electricity market, traditional distribution networks are undergoing a transition to active distribution systems (ADSs), and the traditional deterministic planning methods have become unsuitable under the high penetration of DERs. Aiming to develop appropriate models and methodologies for the planning of ADSs, the key features of ADS planning problem are analyzed from the different perspectives, such as the allocation of DGs and ESS, coupling of operation and planning, and high-level uncertainties. Based on these analyses, this comprehensive literature review summarizes the latest research and development associated with ADS planning. The planning models and methods proposed in these research works are analyzed and categorized from different perspectives including objectives, decision variables, constraint conditions, and solving algorithms. The key theoretical issues and challenges of ADS planning are extracted and discussed. Meanwhile, emphasis is also given to the suitable suggestions to deal with these abovementioned issues based on the available literature and comparisons between them. Finally, several important research prospects are recommended for further research in ADS planning field, such as planning with multiple micro-grids (MGs), collaborative planning between ADSs and information communication system (ICS), and planning from different perspectives of multi-stakeholders.
Journal Article
Resilience-oriented intentional islanding of reconfigurable distribution power systems
by
OBOUDI, Mohammad Hossein
,
RASTEGAR, Mohammad
,
MOHAMMADI, Mohammad
in
Active distribution system
,
Algorithms
,
Demand side management
2019
Participation of distributed energy resources in the load restoration procedure, known as intentional islanding, can significantly improve the distribution system reliability. Distribution system reconfiguration can effectively alter islanding procedure and thus provide an opportunity to supply more demanded energy and reduce distribution system losses. In addition, high-impact events such as hurricanes and earthquake may complicate the procedure of load restoration, due to disconnection of the distribution system from the upstream grid or concurrent component outages. This paper presents a two-level method for intentional islanding of a reconfigurable distribution system, considering high impact events. In the first level, optimal islands are selected according to the graph model of the distribution system. In the second level, an optimal power flow (OPF) problem is solved to meet the operation constraints of the islands by reactive power control and demand side management. The proposed problem in the first level is solved by a combination of depth first search and particle swarm optimization methods. The OPF problem in the second level is solved in DIgSILENT software. The proposed method is implemented in the IEEE 69-bus test system, and the results show the validity and effectiveness of the proposed algorithm.
Journal Article
The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review
by
Táczi, István
,
Sinkovics, Bálint
,
Hartmann, Bálint
in
active distribution systems
,
Algorithms
,
distribution system state estimation
2021
Global trends such as the growing share of renewable energy sources in the generation mix, electrification, e-mobility, and the increasing number of prosumers reshape the electricity value chain, and distribution systems are necessarily affected. These systems were planned, developed, and operated as a passive structure for decades with low level of observability. Due to the increasing number of system states, real time operation planning and flexibility services are the key in transition to an active grid management. In this pathway, distribution system state estimation (DSSE) has a great potential, but the real demonstration of this technique is in an early stage, especially on low-voltage level. This paper focuses on the gap between theory and practice and summarizes the limits of low-voltage DSSE implementation. The literature and the main findings follow the general structure of a state estimation process (meter placement, bad data detection, observability, etc.) giving a more essential and traceable overview structure. Moreover, the paper provides a comprehensive mapping of the possible use-cases state estimation and evaluates 27 different experimental sites to conclude on the practical applicability aspects.
Journal Article
Optimal planning of energy storage system in active distribution system based on fuzzy multi-objective bi-level optimization
by
WU, Xuezhi
,
LI, Rui
,
CHEN, Zhe
in
Active distribution system
,
Bi-level programming
,
Electrical Machines and Networks
2018
A fuzzy multi-objective bi-level optimization problem is proposed to model the planning of energy storage system (ESS) in active distribution systems (ADS). The proposed model enables us to take into account how optimal operation strategy of ESS in the lower level can affect and be affected by the optimal allocation of ESS in the upper level. The power characteristic model of micro-grid (MG) and typical daily scenarios are established to take full consideration of time-variable nature of renewable energy generations (REGs) and load demand while easing the burden of computation. To solve the bi-level mixed integer problem, a multi-subgroup hierarchical chaos hybrid algorithm is introduced based on differential evolution (DE) and particle swarm optimization (PSO). The modified IEEE-33 bus benchmark distribution system is utilized to investigate the availability and effectiveness of the proposed model and the hybrid algorithm. Results indicate that the planning model gives an adequate consideration to the optimal operation and different roles of ESS, and has the advantages of objectiveness and reasonableness.
Journal Article
Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management
by
Hofmann, Lutz
,
Berizzi, Alberto
,
Stock, David
in
active distribution system
,
distributed generation
,
Energy management
2018
The growing importance of renewable generation connected to distribution grids requires an increased coordination between transmission system operators (TSOs) and distribution system operators (DSOs) for reactive power management. This work proposes a practical and effective interaction method based on sequential optimizations to evaluate the reactive flexibility potential of distribution networks and to dispatch them along with traditional synchronous generators, keeping to a minimum the information exchange. A modular optimal power flow (OPF) tool featuring multi-objective optimization is developed for this purpose. The proposed method is evaluated for a model of a real German 110 kV grid with 1.6 GW of installed wind power capacity and a reduced order model of the surrounding transmission system. Simulations show the benefit of involving wind farms in reactive power support reducing losses both at distribution and transmission level. Different types of setpoints are investigated, showing the feasibility for the DSO to fulfill also individual voltage and reactive power targets over multiple connection points. Finally, some suggestions are presented to achieve a fair coordination, combining both TSO and DSO requirements.
Journal Article
Integrated Approach for Network Observability and State Estimation in Active Distribution Grid
by
Bak-Jensen, Birgitte
,
Pokhrel, Basanta Raj
,
R. Pillai, Jayakrishnan
in
Accuracy
,
active distribution system
,
Alternative energy sources
2019
This paper presents a unique integrated approach to meter placement and state estimation to ensure the network observability of active distribution systems. It includes observability checking, minimum measurement utilization, network state estimation, and trade-off evaluation between the number of real measurements used and the accuracy of the estimated state. In network parameter estimation, observability assessment is a preliminary task. It is handled by data analysis and filtering followed by calculation of the triangular factors of the singular, symmetric gain matrix using an algebraic method. Usually, to cover the deficiency of essential real measurements in distribution systems, huge numbers of virtual measurements are used. These pseudo measurements are calculated values, which are based on the network parameters, real measurements, and forecasted load/generation. Due to the application of a huge number of pseudo-measurements, large margins of error exists in the calculation phase. Therefore, there is still a high possibility of having large errors in estimated states, even though the network is classified as being observable. Hence, an integrated approach supported by forecasting is introduced in this work to overcome this critical issue. Finally, estimation of the trade-off in accuracy with respect to the number of real measurements used has been evaluated in order to justify the method’s practical application. The proposed method is applied to a Danish network, and the results are discussed.
Journal Article
Optimal Distribution Network Reconfiguration Using Particle Swarm Optimization-Simulated Annealing: Adaptive Inertia Weight Based on Simulated Annealing
by
Rodriguez, Yuri Percy Molina
,
Ñaupari Huatuco, Dionicio Zocimo
,
Simeon Pucuhuayla, Franklin Jesus
in
adaptive inertia weight
,
Algorithms
,
Alternative energy sources
2025
The reconfiguration of distribution networks plays a crucial role in minimizing active power losses and enhancing reliability, but the problem becomes increasingly complex with the integration of distributed generation (DG). Traditional optimization methods and even earlier hybrid metaheuristics often suffer from premature convergence or require problem reformulations that compromise feasibility. To overcome these limitations, this paper proposes a novel hybrid algorithm that couples Particle Swarm Optimization (PSO) with Simulated Annealing (SA) through an adaptive inertia weight mechanism derived from the Lundy–Mees cooling schedule. Unlike prior hybrid approaches, our method directly addresses the original non-convex, combinatorial nature of the Distribution Network Reconfiguration (DNR) problem without convexification or post-processing adjustments. The main contributions of this study are fourfold: (i) proposing a PSO-SA hybridization strategy that enhances global exploration and avoids stagnation; (ii) introducing an adaptive inertia weight rule tuned by SA, more effective than traditional schemes; (iii) applying a stagnation-based stopping criterion to speed up convergence and reduce computational cost; and (iv) validating the approach on 5-, 33-, and 69-bus systems, with and without DG, showing robustness, recurrence rates above 80%, and low variability compared to conventional PSO. Simulation results confirm that the proposed PSO-SA algorithm achieves superior performance in both loss minimization and solution stability, positioning it as a competitive and scalable alternative for modern active distribution systems.
Journal Article