Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
438 result(s) for "Aculeata"
Sort by:
Larvae and Nests of Aculeate Hymenoptera
The ability of aculeate Hymenoptera to utilize wetlands is poorly understood, and descriptions of their nests and developmental stages are largely absent. Here we present results based on our survey of hymenopterans using galls induced by Lipara spp. flies on common reed Phragmites australis in the years 2015-2016. We studied 20,704 galls, of which 9,446 were longitudinally cut and the brood from them reared in the laboratory, while the remaining 11,258 galls reared in rearing bags also in laboratory conditions. We recorded eight species that were previously not known to nest in reed galls: cuckoo wasps Chrysis rutilans and Trichrysis pumilionis, solitary wasps Stenodynerus chevrieranus and Stenodynerus clypeopictus, and bees Pseudoanthidium tenellum, Stelis punctulatissima, Hylaeus communis and Hylaeus confusus. Forty five species of Hymenoptera: Aculeata are known to be associated with reed galls, of which 36 make their nests there, and the other are six parasitoids of the family Chrysididae and three cuckoo bees of the genus Stelis. Of these species, Pemphredon fabricii and in southern Europe also Heriades rubicola are very common in reed galls, followed by Hylaeus pectoralis and two species of the genus Trypoxylon. We also found new host-parasite associations: Chrysis angustula in nests of Pemphredon fabricii, Chrysis rutilans in nests of Stenodynerus clypeopictus, Trichrysis pumilionis in nests of Trypoxylon deceptorium, and Stelis breviuscula in nests of Heriades rubicola. We provide new descriptions of the nests of seven species nesting in reed galls and morphology of mature larvae of eight species nesting in reed galls and two parasitoids and one nest cleptoparasite. The larvae are usually very similar to those of related species but possess characteristics that make them easy to distinguish from related species. Our results show that common reeds are not only expansive and harmful, but very important for many insect species associated with habitats dominated by this plant species.
Larvae and Nests of Aculeate Hymenoptera with a Review of Species Recorded. Part II
The ability of aculeate Hymenoptera to utilize wetlands is poorly understood, and descriptions of their nests and developmental stages are largely absent. Here we present results based on our survey of hymenopterans using galls induced by Lipara spp. flies on common reed Phragmites australis in the years 2015-2016. We studied 20,704 galls, of which 9,446 were longitudinally cut and the brood from them reared in the laboratory, while the remaining 11,258 galls reared in rearing bags also in laboratory conditions. We recorded eight species that were previously not known to nest in reed galls: cuckoo wasps Chrysis rutilans and Trichrysis pumilionis, solitary wasps Stenodynerus chevrieranus and Stenodynerus clypeopictus, and bees Pseudoanthidium tenellum, Stelis punctulatissima, Hylaeus communis and Hylaeus confusus. Forty five species of Hymenoptera: Aculeata are known to be associated with reed galls, of which 36 make their nests there, and the other are six parasitoids of the family Chrysididae and three cuckoo bees of the genus Stelis. Of these species, Pemphredon fabricii and in southern Europe also Heriades rubicola are very common in reed galls, followed by Hylaeus pectoralis and two species of the genus Trypoxylon. We also found new host-parasite associations: Chrysis angustula in nests of Pemphredon fabricii, Chrysis rutilans in nests of Stenodynerus clypeopictus, Trichrysis pumilionis in nests of Trypoxylon deceptorium, and Stelis breviuscula in nests of Heriades rubicola. We provide new descriptions of the nests of seven species nesting in reed galls and morphology of mature larvae of eight species nesting in reed galls and two parasitoids and one nest cleptoparasite. The larvae are usually very similar to those of related species but possess characteristics that make them easy to distinguish from related species. Our results show that common reeds are not only expansive and harmful, but very important for many insect species associated with habitats dominated by this plant species.
Increased CO sub(2) modifies the carbon balance and the photosynthetic yield of two common Arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta
Ocean acidification affects with special intensity Arctic ecosystems, being marine photosynthetic organisms a primary target, although the consequences of this process in the carbon fluxes of Arctic algae are still unknown. The alteration of the cellular carbon balance due to physiological acclimation to an increased CO sub(2) concentration (1300 ppm) in the common Arctic brown seaweeds Desmarestia aculeata and Alaria esculenta from Kongsfjorden (Svalbard) was analysed. Growth rate of D. aculeata was negatively affected by CO sub(2) enrichment, while A. esculenta was positively affected, as a result of a different reorganization of the cellular carbon budget in both species. Desmarestia aculeata showed increased respiration, enhanced accumulation of storage biomolecules and elevated release of dissolved organic carbon, whereas A. esculenta showed decreased respiration and lower accumulation of storage biomolecules. Gross photosynthesis (measured both as O sub(2) evolution and super(14)C fixation) was not affected in any of them, suggesting that photosynthesis was already saturated at normal CO sub(2) conditions and did not participate in the acclimation response. However, electron transport rate changed in both species in opposite directions, indicating different energy requirements between treatments and species specificity. High CO sub(2) levels also affected the N-metabolism, and super(13)C isotopic discrimination values from algal tissue pointed to a deactivation of carbon concentrating mechanisms. Since increased CO sub(2) has the potential to modify physiological mechanisms in different ways in the species studied, it is expected that this may lead to changes in the Arctic seaweed community, which may propagate to the rest of the food web.
Phylogenomic analysis of Apoidea sheds new light on the sister group of bees
Background Apoid wasps and bees (Apoidea) are an ecologically and morphologically diverse group of Hymenoptera, with some species of bees having evolved eusocial societies. Major problems for our understanding of the evolutionary history of Apoidea have been the difficulty to trace the phylogenetic origin and to reliably estimate the geological age of bees. To address these issues, we compiled a comprehensive phylogenomic dataset by simultaneously analyzing target DNA enrichment and transcriptomic sequence data, comprising 195 single-copy protein-coding genes and covering all major lineages of apoid wasps and bee families. Results Our compiled data matrix comprised 284,607 nucleotide sites that we phylogenetically analyzed by applying a combination of domain- and codon-based partitioning schemes. The inferred results confirm the polyphyletic status of the former family “Crabronidae”, which comprises nine major monophyletic lineages. We found the former subfamily Pemphredoninae to be polyphyletic, comprising three distantly related clades. One of them, Ammoplanina, constituted the sister group of bees in all our analyses. We estimate the origin of bees to be in the Early Cretaceous (ca. 128 million years ago), a time period during which angiosperms rapidly radiated. Finally, our phylogenetic analyses revealed that within the Apoidea, (eu)social societies evolved exclusively in a single clade that comprises pemphredonine and philanthine wasps as well as bees. Conclusion By combining transcriptomic sequences with those obtained via target DNA enrichment, we were able to include an unprecedented large number of apoid wasps in a phylogenetic study for tracing the phylogenetic origin of bees. Our results confirm the polyphyletic nature of the former wasp family Crabonidae, which we here suggest splitting into eight families. Of these, the family Ammoplanidae possibly represents the extant sister lineage of bees. Species of Ammoplanidae are known to hunt thrips, of which some aggregate on flowers and feed on pollen. The specific biology of Ammoplanidae as predators indicates how the transition from a predatory to pollen-collecting life style could have taken place in the evolution of bees. This insight plus the finding that (eu)social societies evolved exclusively in a single subordinated lineage of apoid wasps provides new perspectives for future comparative studies.
Assembly of the Complete Mitochondrial Genome of Pereskia aculeata Revealed That Two Pairs of Repetitive Elements Mediated the Recombination of the Genome
Pereskia aculeata is a potential new crop species that has both food and medicinal (antinociceptive activity) properties. However, comprehensive genomic research on P. aculeata is still lacking, particularly concerning its organelle genome. In this study, P. aculeata was studied to sequence the mitochondrial genome (mitogenome) and to ascertain the assembly, informational content, and developmental expression of the mitogenome. The findings revealed that the mitogenome of P. aculeata is circular and measures 515,187 bp in length with a GC content of 44.05%. It contains 52 unique genes, including 33 protein-coding genes, 19 tRNA genes, and three rRNA genes. Additionally, the mitogenome analysis identified 165 SSRs, primarily consisting of tetra-nucleotides, and 421 pairs of dispersed repeats with lengths greater than or equal to 30, which were mainly forward repeats. Based on long reads and PCR experiments, we confirmed that two pairs of long-fragment repetitive elements were highly involved with the mitogenome recombination process. Furthermore, there were 38 homologous fragments detected between the mitogenome and chloroplast genome, and the longest fragment was 3962 bp. This is the first report on the mitogenome in the family Cactaceae. The decoding of the mitogenome of P. aculeata will provide important genetic materials for phylogenetic studies of Cactaceae and promote the utilization of species germplasm resources.
Structure and genetic diversity of macauba Acrocomia aculeata (Jacq.) Lodd. ex Mart. approached by SNP markers to assist breeding strategies
Macauba palm [ Acrocomia aculeata (Jacq.) Lodd. ex Mart.] is a perennial oil, it stands out for having several characteristics of commercial interest, mainly for producing oil for biodiesel, it has high oil productivity, about 2.5 to 4.5 L·year -1 . Despite its great potential, o its cultivation is carried out mainly in an extractive way, so the domestication and breeding programs has been incipient. The study hypothesis is that macauba populations collected in different locations have sufficient genetic variability to initiate a breeding program. Thus, the aim of this study was to estimate the genetic diversity and population structure of macauba palm genotypes by using single nucleotide polymorphism (SNP) markers in order to reveal genetic diversity and distribution of genetic variation within and between populations and use the genetic information obtained to assist breeding strategies. Leaf tissues were collected from 566 macauba plants belonging to the Embrapa Cerrados Active Germplasm Bank, composed of genotypes from five states in Brazil: Minas Gerais, Goiás, Pará, São Paulo, and Distrito Federal. Molecular variance analysis estimated, the genetic diversity parameters, the population structure and principal coordinate analysis. The genetic diversity is higher within than between populations. The results provided by PCoA and STRUCTURE were in agreement and indicated that the evaluated genotypes can be grouped into two groups. Genetic diversity parameters reveal the presence of inbreeding and a low number of heterozygotes, evidencing that the reproduction system of the species is mixed. The information revealed of the genotypes using SNP markers will be important for future studies using genome-wide selection and genomic association to develop cultivars of macauba with desirable traits, such as high yield of fruits and oil production.
Current and future development of Acrocomia aculeata focused on biofuel potential and climate change challenges
The search for sustainable alternatives to petroleum has driven research on biofuels, with a focus on those derived from organic biomass. This study centres on macaúba ( Acrocomia aculeata ), a promising oilseed for biodiesel production. Advances in cultivation techniques and the mapping of climatically suitable areas are essential to consolidate the use of this species in the energy sector. This work aimed to utilise predictive modelling with the CLIMEX software to assess the current and future climatic suitability of macaúba in the context of climate change. Data on the global distribution of macaúba, growth and stress parameters, as well as climatic variables, were collected. The modelling was conducted based on the A2 SRES scenario for the present, 2050, 2080, and 2100, including the generation of the Weekly Growth Index. Results indicated high suitability in tropical regions, particularly in Brazil and Indonesia. However, future projections highlight significant challenges due to rising temperatures and reduced rainfall. The study provides a critical perspective to guide sustainable policies in the energy sector, underscoring the potential of macaúba as a viable biodiesel source while warning of the challenges posed by climate change.
Valorization of Macauba (Acromia aculeata) for Integrated Production of Lipase by Yarrowia lipolytica and Biodiesel Esters
Enzymatic biodiesel production is a potential eco-friendly alternative to the conventional chemical route which requires extensive study to reduce the costs associated with the application of commercial enzymes. Thus, this study aimed to develop a bioprocess using residues from macauba (Acrocomia aculeata) as raw material for lipase production in solid-state fermentation (SSF) by Yarrowia lipolytica. Then, the product obtained was used as a biocatalyst for the conversion (hydrolysis/esterification) of macauba acidic oil to biodiesel esters. Firstly, different SSF parameters (inoculum concentration, initial moisture content, and carbon and nitrogen levels) were investigated in a factorial design approach, using the cake from macauba fruit. Afterwards, moisture and urea concentration were shown to be statistically significant variables for lipase production. Lipase productnivities were 12.6 ± 0.6 U g−1 h−1 (at 24 h) for macauba fruit cake and 11.6 ± 1 U g−1 h−1 (at 20 h) for macauba pulp and peel cake. The solid enzymatic preparation (biocatalyst) showed optimized values at pH 6–7 at 37 °C, remaining stable (>70% retention) for 90 days at room temperature. Finally, enzymatic hydrolysis of the acidic oil from macauba reached 96% conversion (72 h) to fatty acids, and esterification of fatty acids reached 72% (biodiesel yield of 67%). The bioprocess described is a promising alternative for an integral and self-sufficient valorization of the macauba products.
Evolution of Metapostnotum in Flat Wasps (Hymenoptera, Bethylidae): Implications for Homology Assessments in Chrysidoidea
Some authors in the past based their conclusions about the limits of the metapostnotum of Chrysidoidea based on the position of the mesophragmo-metaphragmal muscle, rather than aspects of the skeleton and musculature associated with the metapectal-propodeal complex. The latter character system suggests another interpretation of the metapostnotum delimitation. Given this scenario, the main goal of this work is to present a new perspective on the metapostnotum in Chrysidoidea, especially Bethylidae, helping to resolve questions related to the evolution of the metapostnotum. This is based on homologies established by associating of insertion points of ph2-ph3 and ph3-T2 muscles with the delimitation of the respective sclerite the muscles insert into. Our results indicate that, according the position of the metaphragmal muscles, the metapostnotum in Bethylidae is medially expanded in the propodeal disc and has different forms of configuration. Internally, the limits of the metapostnotum can be tracked by the shape of the mesopostnotum, and vice versa. Thus, the anteromedian area of the propodeal disc sensu Evans was reinterpreted in the current study as the metapostnotum. In conjunction with associated structures, we provide evidence to clarify the relationships between the families within Chrysidoidea, although certain families like Embolemidae, Dryinidae and Chrysididae exhibit extreme modifications of the condition found in Aculeata, as observed in Bethylidae. We review the terminology used to describe anatomical features on the metapectal-propodeal complex in Bethylidae in general, and provide a list of recommended terms in accordance with the online Hymenoptera Anatomy Ontology. The morphology of the studied subfamilies are illustrated. Studies that focus on a single structure, across a larger number of taxa, are more insightful and present specific questions that can contribute to broader issues, thus providing a better understanding of the morphology and evolution of insects.
Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities
The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.