Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
145 result(s) for "Acute-On-Chronic Liver Failure - metabolism"
Sort by:
Albumin in decompensated cirrhosis: new concepts and perspectives
The pathophysiological background of decompensated cirrhosis is characterised by a systemic proinflammatory and pro-oxidant milieu that plays a major role in the development of multiorgan dysfunction. Such abnormality is mainly due to the systemic spread of bacteria and/or bacterial products from the gut and danger-associated molecular patterns from the diseased liver triggering the release of proinflammatory mediators by activating immune cells. The exacerbation of these processes underlies the development of acute-on-chronic liver failure. A further mechanism promoting multiorgan dysfunction and failure likely consists with a mitochondrial oxidative phosphorylation dysfunction responsible for systemic cellular energy crisis. The systemic proinflammatory and pro-oxidant state of patients with decompensated cirrhosis is also responsible for structural and functional changes in the albumin molecule, which spoil its pleiotropic non-oncotic properties such as antioxidant, scavenging, immune-modulating and endothelium protective functions. The knowledge of these abnormalities provides novel targets for mechanistic treatments. In this respect, the oncotic and non-oncotic properties of albumin make it a potential multitarget agent. This would expand the well-established indications to the use of albumin in decompensated cirrhosis, which mainly aim at improving effective volaemia or preventing its deterioration. Evidence has been recently provided that long-term albumin administration to patients with cirrhosis and ascites improves survival, prevents complications, eases the management of ascites and reduces hospitalisations. However, variant results indicate that further investigations are needed, aiming at confirming the beneficial effects of albumin, clarifying its optimal dosage and administration schedule and identify patients who would benefit most from long-term albumin administration.
Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure
Macrophages facilitate essential homeostatic functions e.g., endocytosis, phagocytosis, and signaling during inflammation, and express a variety of scavenger receptors including CD163 and CD206, which are upregulated in response to inflammation. In healthy individuals, soluble forms of CD163 and CD206 are constitutively shed from macrophages, however, during inflammation pathogen- and damage-associated stimuli induce this shedding. Activation of resident liver macrophages viz. Kupffer cells is part of the inflammatory cascade occurring in acute and chronic liver diseases. We here review the existing literature on sCD163 and sCD206 function and shedding, and potential as biomarkers in acute and chronic liver diseases with a particular focus on Acute-on-Chronic Liver Failure (ACLF). In multiple studies sCD163 and sCD206 are elevated in relation to liver disease severity and established as reliable predictors of morbidity and mortality. However, differences in expression- and shedding-stimuli for CD163 and CD206 may explain dissimilarities in prognostic utility in patients with acute decompensation of cirrhosis and ACLF.
Balanced haemostasis with both hypo- and hyper-coagulable features in critically ill patients with acute-on-chronic-liver failure
Cirrhotic patients have complex haemostatic abnormalities. Current evidence suggests stable cirrhotic (SC) patients have a “re-balanced” haemostatic state. However, limited data exists in acute decompensated (AD) or acute on chronic liver failure (ACLF) patients. We utilised thrombin generation analysis, fibrinolysis assessment, and evaluation of haemostatic parameters to assess haemostasis in liver disease of progressive severity. The study cohorts were comprised of: SC, n=8; AD n=44; ACLF, n=17; and Healthy Control (HC), n=35. There was a progressive increase across the cohorts in INR (p=0.0001), Factor VIII (p=0.0001) and VWF levels (p=0.0001) and a correspondingly decrease in anti-thrombin (p=0.0001), ADAMTS-13 (p=0.01) and fibrinogen levels (p=0.0001). In the presence of thrombomodulin, thrombin generation was equivalent or significantly higher in all the cohorts compared to HC (p=0.0001). Compared to AD, ACLF had a lower ETP (p=0.002) and thrombin peak (p=0.0001). There was no significant difference across the cohorts in clot lysis time (p=0.07), although compared to HC, AD had a significantly shorter lysis time (p=0.001). Our cohorts, despite significant differences in haemostatic parameters, displayed intact thrombin generation but progressive hypo-functional clot stability and potentially but not universal hyper-functional haemostasis. •Haemostatic parameters change progressively from stable cirrhosis to acute-on-chronic liver failure.•Thrombin generation remains intact in acute decompensated and acute-on-chronic liver failure.•Clot stability varied significantly between the cohorts.•Acute-on-chronic liver failure appears to have a separate haemostatic phenotype.
Bilirubin Molecular Species Play an Important Role in the Pathophysiology of Acute-on-Chronic Liver Failure
Bilirubin plays a key role in early diagnosis, prognosis, and prevention of liver diseases. Unconjugated bilirubin (UCB) requires conversion to a water-soluble form through liver glucuronidation, producing monoglucuronide (BMG) or diglucuronide bilirubin (BDG) for bile excretion. This study aimed to assess the roles of bilirubin’s molecular species—UCB, BMG, and BDG—in diagnosing and understanding the pathogenesis of liver cirrhosis in patients with acute-on-chronic liver failure (ACLF), compensated liver cirrhosis (LC) patients, and healthy individuals. The study included patients with ACLF and compensated LC of diverse etiologies, along with healthy controls. We collected laboratory and clinical data to determine the severity and assess mortality. We extracted bilirubin from serum samples to measure UCB, BMG, and BDG using liquid chromatography–mass spectrometry (LC-MS). The quantification of bilirubin was performed by monitoring the mass charge (m/z) ratio. Of the 74 patients assessed, 45 had ACLF, 11 had LC, and 18 were healthy individuals. Among ACLF patients, the levels of molecular species of bilirubin were UCB 19.69 μmol/L, BMG 47.71 μmol/L, and BDG 2.120 μmol/L. For compensated cirrhosis patients, the levels were UCB 11.29 μmol/L, BMG 1.49 μmol/L, and BDG 0.055 μmol/L, and in healthy individuals, the levels were UCB 6.42 μmol/L, BMG 0.52 μmol/L, and BDG 0.028 μmol/L. The study revealed marked elevations in the bilirubin species in individuals with ACLF compared to those with compensated cirrhosis and healthy controls, underscoring the progression of liver dysfunction. The correlation of BMG and BDG levels with commonly used inflammatory markers suggests a relationship between bilirubin metabolism and systemic inflammation in ACLF.
Hyponatremia in Cirrhosis: An Update
Hyponatremia is frequently seen in patients with ascites secondary to advanced cirrhosis and portal hypertension. Although not apparent in the early stages of cirrhosis, the progression of cirrhosis and portal hypertension leads to splanchnic vasodilation, and this leads to the activation of compensatory mechanisms such as renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system, and antidiuretic hormone (ADH) to ameliorate low circulatory volume. The net effect is the avid retention of sodium and water to compensate for the low effective circulatory volume, resulting in the development of ascites. These compensatory mechanisms lead to impairment of the kidneys to eliminate solute-free water in decompensated cirrhosis. Nonosmotic secretion of antidiuretic hormone (ADH), also known as arginine vasopressin, further worsens excess water retention and thereby hyponatremia. The management of hyponatremia in this setting is a challenge as conventional therapies for hyponatremia including fluid restriction and correction of hypokalemia are frequently inefficacious. In this review, we discuss the pathophysiology, complications, and various treatment modalities, including albumin infusion, selective vasopressin receptor antagonists, or hypertonic saline for patients with severe hyponatremia and those awaiting liver transplantation.
Mesenchymal stem cell–derived exosome delivery of let-7a-5p enhances macrophage efferocytosis via Arid3a/Mertk axis in acute-on-chronic liver failure
Abstract Background Acute-on-chronic liver failure (ACLF) is a severe clinical syndrome with a high mortality rate and limited therapeutic options. Macrophage efferocytosis plays an essential role in maintaining tissue homeostasis, and its dysfunction may be associated with the pathogenesis of ACLF. We previously found that mesenchymal stem cell (MSC) treatment in ACLF mice promoted macrophage M2 polarization and elevated the efferocytosis-related protein Mertk, but the underlying mechanisms remained unclear. Methods The role of efferocytosis was investigated in liver tissues from ACLF patients and an ACLF mouse model treated with MSC-derived exosomes (MSC-Exos). In vitro experiments utilizing lipopolysaccharide-induced M1 macrophages were conducted to dissect the underlying mechanism, targeting the miRNA let-7a-5p. Engineered exosomes (MSC-Exoslet-7a-5p) were developed via electroporation to validate the therapeutic potential. Results Impaired macrophage efferocytosis in liver tissues correlated with poor prognosis in ACLF patients. Treatment with MSC-Exos significantly improved histological morphology, liver function and enhanced efferocytosis in ACLF mice. Mechanistically, MSC-Exos delivered let-7a-5p to M1 macrophages, which downregulated Arid3a and upregulated Mertk expression. Furthermore, engineered MSC-Exoslet-7a-5p promoted efferocytosis more effectively than unmodified exosomes. Conclusion MSC-Exos enhance macrophage efferocytosis in ACLF via the let-7a-5p/Arid3a/Mertk axis. Engineered MSC-Exoslet-7a-5p, by boosting this pathway, provide a potential strategy for improving ACLF therapy. Graphical abstract Graphical Abstract
Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure
The lipopolysaccharide (LPS)– toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure.
Lipid metabolism disturbance and immune dysfunction in HBV-related acute-on-chronic liver failure: a retrospective cohort study
Objective This study aimed to elucidate the correlations among dyslipidemia, immune function, and clinical outcomes in patients with acute-on-chronic liver failure (ACLF), with particular emphasis on the clinical significance of lipid metabolism and cellular immune parameters in hepatitis B virus-associated ACLF (HBV-ACLF). Methods A retrospective analysis was conducted on 803 patients with HBV-ACLF admitted to the Shanghai Public Health Clinical Center from January 2014 to January 2024. Patients were stratified into deceased ( n  = 414) and survival ( n  = 389) groups based on clinical outcomes. Clinical baseline data, lipid metabolic indices, and cellular immune parameters were collected. The Spearman correlation coefficient was utilized to assess the correlation between lipid metabolic indices and cellular immune parameters, and a multivariate Cox proportional hazards model was applied to analyze risk factors for mortality. Results Compared to the survival group, lipid metabolism indices in the deceased group were significantly reduced ( P  < 0.05). Lipid metabolism indices, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (APOA1), apolipoprotein B (APOB), total cholesterol (TC), and triglycerides (TG), demonstrated significant negative correlations with the severity of liver failure ( P  < 0.05). Correlation analysis with lymphocyte subset counts revealed positive correlations between low-density lipoprotein, TG, TC, APOB, and CD3 + T cells, CD4 + T cells, CD8 + T cells, and CD45 + T cells ( P  < 0.05). APOA1 and HDL-C were positively correlated with B cells and NK cells ( P  < 0.05). TG and APOB showed significant negative correlations with the CD4/CD8 ratio ( P  < 0.05). Multivariate Cox analysis identified age, creatinine, total bilirubin, international normalized ratio (INR), hepatic encephalopathy, and hepatorenal syndrome as independent risk factors affecting the short-term prognosis of HBV-ACLF, while sodium, APOA1, and APOB were identified as independent protective factors for ACLF (HR = 0.984, 95% CI: 0.974–0.995, P  < 0.001, HR = 0.267,95% CI: 0.120–0.596, P  = 0.001, HR = 0.486, 95% CI: 0.282–0.838, P  = 0.010). Conclusion Patients with HBV-ACLF exhibit decreased levels of TC, TG, LDL-C, HDL-C, APOA1, and APOB. These alterations in serum lipid profiles are associated with immune dysfunction and disease progression in HBV-ACLF. Notably, APOA1 and APOB serve as protective factors against 90-day mortality in hospitalized ACLF patients. Further investigation is warranted to elucidate the relationship between lipid metabolism disturbances and peripheral immunity in ACLF.
Galectin-9 as a new biomarker of acute-on-chronic liver failure
Galectin-9 (Gal-9) expression in patients with acute-on-chronic liver failure and its correlation with prognosis remain unclear. This study investigated the relationship between liver failure prognosis and Gal-9 expression analysis in patients with acute-on-chronic liver failure. Patients with acute-on-chronic liver failure attributable to hepatitis B and those with chronic hepatitis B were included in this single-center prospective cohort study. The Gal-9 levels in the acute-on-chronic liver failure group were significantly higher than those in the chronic hepatitis B group, and there was an upregulation of Gal-9 and T-cell immunoglobulin domain and mucin domain-3 expressions in peripheral blood T cells. Gal-9 was localized in the regenerative areas of liver tissues in patients with acute-on-chronic liver failure, co-localizing with Kupffer cells. Kaplan–Meier survival curves showed that patients with Gal-9 levels < 9.6 ng/ml had a worse prognosis, with the area under the receiver operating characteristic curve (AUC-ROC) being similar to that of the Model for End-Stage Liver Disease score. The combined ROC curve of the two had better predictive performance, with an AUC of 0.945. High Gal-9 levels in liver regenerative areas can serve as a prognostic marker, indicating a better prognosis for patients with hepatitis B virus-acute-on-chronic liver failure.
Mitofusin2, a rising star in acute‐on‐chronic liver failure, triggers macroautophagy via the mTOR signalling pathway
Acute‐on‐chronic liver failure (ACLF) is a life‐threatening syndrome with poor prognosis. Several studies have begun to prove that mitochondria play a crucial role in liver failure. Mitofusin2 (Mfn2) plays a key role in maintaining the integrity of mitochondrial morphology and function. However, the role and underlying mechanisms of Mfn2 on cell autophagy of ACLF remain unclear. Our aim was to explore the effect of Mfn2 on several biological functions involving cell autophagy in ACLF. In this study, we constructed an ACLF animal model and a hepatocyte autophagy model, using adenovirus and lentivirus to deliver Mfn2 to liver cells, in order to assess the effect of Mfn2 on autophagy and apoptosis in ACLF. Furthermore, we explored the biological mechanism of Mfn2‐induced autophagy of ACLF using Western blotting, RT‐PCR and electron microscopy. We found that Mfn2 significantly attenuated ACLF, characterized by ameliorated gross appearance and microscopic histopathology of liver, and reduced serum AST, ALT, and TBIL levels. Mfn2 improved the expressions of LC3‐II, Atg5 and Bcl‐2 and down‐regulated the expression of P62 and Bax in ACLF. Like rapamycin, Mfn2 also significantly inhibited the expressions of p‐PI3K, p‐Akt and p‐mTOR in ACLF. In conclusion, our findings suggest that Mfn2 influences multiple biological functions of ACLF via the PI3K/Akt/mTOR signalling pathway. This study will provide a reliable theoretical basis for the application of Mfn2 as an effective target for ACLF treatment, reversing or delaying the process of ACLF.