Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
139 result(s) for "Adenosine Deaminase - therapeutic use"
Sort by:
Long-term and real-world safety and efficacy of retroviral gene therapy for adenosine deaminase deficiency
Adenosine deaminase (ADA) deficiency leads to severe combined immunodeficiency (SCID). Previous clinical trials showed that autologous CD34 + cell gene therapy (GT) following busulfan reduced-intensity conditioning is a promising therapeutic approach for ADA-SCID, but long-term data are warranted. Here we report an analysis on long-term safety and efficacy data of 43 patients with ADA-SCID who received retroviral ex vivo bone marrow-derived hematopoietic stem cell GT. Twenty-two individuals (median follow-up 15.4 years) were treated in the context of clinical development or named patient program. Nineteen patients were treated post-marketing authorization (median follow-up 3.2 years), and two additional patients received mobilized peripheral blood CD34 + cell GT. At data cutoff, all 43 patients were alive, with a median follow-up of 5.0 years (interquartile range 2.4–15.4) and 2 years intervention-free survival (no need for long-term enzyme replacement therapy or allogeneic hematopoietic stem cell transplantation) of 88% (95% confidence interval 78.7–98.4%). Most adverse events/reactions were related to disease background, busulfan conditioning or immune reconstitution; the safety profile of the real world experience was in line with premarketing cohort. One patient from the named patient program developed a T cell leukemia related to treatment 4.7 years after GT and is currently in remission. Long-term persistence of multilineage gene-corrected cells, metabolic detoxification, immune reconstitution and decreased infection rates were observed. Estimated mixed-effects models showed that higher dose of CD34 + cells infused and younger age at GT affected positively the plateau of CD3 + transduced cells, lymphocytes and CD4 + CD45RA + naive T cells, whereas the cell dose positively influenced the final plateau of CD15 + transduced cells. These long-term data suggest that the risk–benefit of GT in ADA remains favorable and warrant for continuing long-term safety monitoring. Clinical trial registration: NCT00598481 , NCT03478670 . Fifteen years’ follow-up of clinical development and real-world data from 43 patients show that gammaretroviral gene therapy for adenosine deaminase deficiency has a positive long-term efficacy profile, warranting continued safety monitoring of patients receiving gene therapy.
Multi-Year Registry Study of Elapegademase Treatment in Patients With Adenosine Deaminase Severe Combined Immunodeficiency (ADA-SCID) Requiring Enzyme Replacement Therapy
Purpose The safety and tolerability of elapegademase (elapegademase-lvlr; Revcovi ® ) a PEGylated recombinant adenosine deaminase (ADA), were demonstrated in two Phase 3 clinical trials in the U.S. and Japan in patients with ADA-deficient severe combined immunodeficiency (ADA-SCID). Elapegademase replaced Adagen ® (pegademase, a PEGylated bovine ADA) in 2018. This registry study (NCT03878069) was conducted as a post-marketing requirement to bolster the limited safety and effectiveness data on elapegademase in patients with ADA-SCID and to study patients starting on enzyme replacement therapy (ERT) de novo . Methods Patients were managed by routine clinical care and treating physicians’ judgement from September 2019 to January 2023. Primary endpoints included trough plasma ADA activity and total trough erythrocyte deoxyadenosine nucleotides (dAXP). Secondary outcomes included lymphocyte counts, hospitalizations, infections, and safety outcomes. Results Thirty-two patients were grouped as ERT-naïve ( n  = 7; infants and children with no prior ERT [EN]); pegademase-transitioning ( n  = 21; from pegademase to elapegademase [PT]); and patients who had participated in the Phase 3 clinical trial ( n  = 4; STP-2279-002; [STP]). The EN group maintained optimal plasma ADA activity, increased lymphocyte counts, had manageable infections, and had no mortality for up to 30 months while on elapegademase. The STP group and 66.7% of the PT group continued to maintain satisfactory levels of both ADA and dAXP with stable rates of infections and hospitalizations and stable lymphocyte counts for up to 48.6 months. Variability on all measures was seen, but overall, patients did not deteriorate while on elapegademase. Conclusion Effectiveness of elapegademase was maintained up to 4 years of use and with no new safety concerns.
Detrimental effects of adenosine signaling in sickle cell disease
Yujin Zhang et al . discovered that the concentration of adenosine in the blood is increased both in a mouse model of sickle cell disease and in humans with this disease. Adenosine seems to have a pathological role in this disease, as it induced sickling of human erythrocytes through a mechanism involving activation of the A 2B adenosine receptor. Treatment of the mouse model of sickle cell disease with an agent to lower adenosine levels or with an A 2B adenosine receptor antagonist had beneficial effects, pointing to new therapeutic strategies for this disease. Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A 2B receptor (A 2B R)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A 2B R has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.
ADAR Therapeutics as a New Tool for Personalized Medicine
In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity. Intriguingly, the novel SDRE system leverages this recoding ability of ADAR proteins to correct the pathogenic G to A nucleotide mutations through a short, engineered guide RNA (gRNA). Thus, ADAR-mediated SDRE is emerging as a powerful tool to manipulate the genetic information at the RNA level and correct disease-causing mutations without causing damage to the genome. Further it is emerging as a new instrument for personalized medicine, since treatments can be tailored to the unique genetic mutations present in an individual patient. In this short review, we aimed to described the main approached bases on ADARs activity, highlighting their advantages and disadvantages.
How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID)
Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10–15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy—GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.
Metabolite and thymocyte development defects in ADA-SCID mice receiving enzyme replacement therapy
Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme intrinsic to the purine salvage pathway, leads to severe combined immunodeficiency (SCID) both in humans and mice. Lack of ADA results in the intracellular accumulation of toxic metabolites which have effects on T cell development and function. While untreated ADA-SCID is a fatal disorder, there are different therapeutic options available to restore ADA activity and reconstitute a functioning immune system, including enzyme replacement therapy (ERT). Administration of ERT in the form of pegylated bovine ADA (PEG-ADA) has proved a life-saving though non-curative treatment for ADA-SCID patients. However, in many patients treated with PEG-ADA, there is suboptimal immune recovery with low T and B cell numbers. Here, we show reduced thymus cellularity in ADA-SCID mice despite weekly PEG-ADA treatment. This was associated with lack of effective adenosine (Ado) detoxification in the thymus. We also show that thymocyte development in ADA-deficient thymi is arrested at the DN3-to-DN4 stage transition with thymocytes undergoing dATP-induced apoptosis rather than defective TCRβ rearrangement or β-selection. Our studies demonstrate at a detailed level that exogenous once-a-week enzyme replacement does not fully correct intra-thymic metabolic or immunological abnormalities associated with ADA deficiency.
Normal IgH Repertoire Diversity in an Infant with ADA Deficiency After Gene Therapy
PurposeAdenosine deaminase (ADA) deficiency causes severe combined immunodeficiency (SCID) through an accumulation of toxic metabolites within lymphocytes. Recently, ADA deficiency has been successfully treated using lentiviral-transduced autologous CD34+ cells carrying the ADA gene. T and B cell function appears to be fully restored, but in many patients’ B cell numbers remain low, and assessments of the immunoglobulin heavy (IgHV) repertoire following gene therapy are lacking.MethodsWe performed deep sequencing of IgHV repertoire in peripheral blood lymphocytes from a child following lentivirus-based gene therapy for ADA deficiency and compared to the IgHV repertoire in healthy infants and adults.ResultsAfter gene therapy, Ig diversity increased over time as evidenced by V, D, and J gene usage, N-additions, CDR3 length, extent of somatic hypermutation, and Ig class switching. There was the emergence of predominant IgHM, IgHG, and IgHA CDR3 lengths after gene therapy indicating successful oligoclonal expansion in response to antigens. This provides proof of concept for the feasibility and utility of molecular monitoring in following B cell reconstitution following gene therapy for ADA deficiency.ConclusionBased on deep sequencing, gene therapy resulted in an IgHV repertoire with molecular diversity similar to healthy infants.
Adenosine deaminase-1 enhances germinal center formation and functional antibody responses to HIV-1 Envelope DNA and protein vaccines
•We show ADA enhances human DC differentiation and promote a TFH polarizing cytokines.•We have determined that ADA selectively enhances GC-TFH frequency in vivo.•ADA improves the quality of anti-HIV antibodies, generating neutralizing antibodies. Adenosine deaminase-1 (ADA-1) plays both enzymatic and non-enzymatic roles in regulating immune cell function. Mutations in the ADA1 gene account for 15% of heritable severe-combined immunodeficiencies. We determined previously that ADA1 expression defines and is instrumental for the germinal center follicular helper T cell (TFH) phenotype using in vitro human assays. Herein, we tested whether ADA-1 can be used as an adjuvant to improve vaccine efficacy in vivo. In vitro, ADA-1 induced myeloid dendritic cell (mDC) maturation as measured by increased frequencies of CD40-, CD83-, CD86-, and HLA-DR-positive mDCs. ADA-1 treatment also promoted the secretion of the TFH-polarizing cytokine IL-6 from mDCs. In the context of an HIV-1 envelope (env) DNA vaccine, co-immunization with plasmid-encoded ADA-1 (pADA) enhanced humoral immunity. Animals co-immunized with env DNA and pADA had significantly increased frequencies of TFH cells in their draining lymph nodes and increased HIV-binding IgG in serum. Next, mice were co-immunized with subtype C env gp160 DNA and pADA along with simultaneous immunization with matched gp140 trimeric protein. Mice that received env gp160 DNA, pADA, and gp140 glycoprotein had significantly more heterologous HIV-specific binding IgG in their serum. Furthermore, only these mice had detectable neutralizing antibody responses. These studies support the use of ADA-1 as a vaccine adjuvant to qualitatively enhance germinal center responses and represent a novel application of an existing therapeutic agent that can be quickly translated for clinical use.
Therapeutic Perspectives of Adenosine Deaminase Inhibition in Cardiovascular Diseases
Adenosine deaminase (ADA) is an enzyme of purine metabolism that irreversibly converts adenosine to inosine or 2′deoxyadenosine to 2′deoxyinosine. ADA is active both inside the cell and on the cell surface where it was found to interact with membrane proteins, such as CD26 and adenosine receptors, forming ecto-ADA (eADA). In addition to adenosine uptake, the activity of eADA is an essential mechanism that terminates adenosine signaling. This is particularly important in cardiovascular system, where adenosine protects against endothelial dysfunction, vascular inflammation, or thrombosis. Besides enzymatic function, ADA protein mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. Furthermore, alteration in ADA activity was demonstrated in many cardiovascular pathologies such as atherosclerosis, myocardial ischemia-reperfusion injury, hypertension, thrombosis, or diabetes. Modulation of ADA activity could be an important therapeutic target. This work provides a systematic review of ADA activity and anchoring inhibitors as well as summarizes the perspectives of their therapeutic use in cardiovascular pathologies associated with increased activity of ADA.
Advanced Glycation End Products: A Molecular Target for Vascular Complications in Diabetes
A nonenzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules and subsequently alters their structural integrity and function. This process has been known to progress at an accelerated rate under hyperglycemic and/or oxidative stress conditions. Over a course of days to weeks, early glycation products undergo further reactions such as rearrangements and dehydration to become irreversibly cross-linked, fluorescent and senescent macroprotein derivatives termed advanced glycation end products (AGEs). There is a growing body of evidence indicating that interaction of AGEs with their receptor (RAGE) elicits oxidative stress generation and as a result evokes proliferative, inflammatory, thrombotic and fibrotic reactions in a variety of cells. This evidence supports AGEs’ involvement in diabetes- and aging-associated disorders such as diabetic vascular complications, cancer, Alzheimer’s disease and osteoporosis. Therefore, inhibition of AGE formation could be a novel molecular target for organ protection in diabetes. This report summarizes the pathophysiological role of AGEs in vascular complications in diabetes and discusses the potential clinical utility of measurement of serum levels of AGEs for evaluating organ damage in diabetes.