Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,452
result(s) for
"Adiponectin receptor"
Sort by:
A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity
by
Ueki, Kohjiro
,
Nagano, Tetsuo
,
Kimura-Someya, Tomomi
in
631/80/304
,
Adenylate Kinase - metabolism
,
Adiponectin - metabolism
2013
Adiponectin secreted from adipocytes binds to adiponectin receptors AdipoR1 and AdipoR2, and exerts antidiabetic effects via activation of AMPK and PPAR-α pathways, respectively. Levels of adiponectin in plasma are reduced in obesity, which causes insulin resistance and type 2 diabetes. Thus, orally active small molecules that bind to and activate AdipoR1 and AdipoR2 could ameliorate obesity-related diseases such as type 2 diabetes. Here we report the identification of orally active synthetic small-molecule AdipoR agonists. One of these compounds, AdipoR agonist (AdipoRon), bound to both AdipoR1 and AdipoR2
in vitro
. AdipoRon showed very similar effects to adiponectin in muscle and liver, such as activation of AMPK and PPAR-α pathways, and ameliorated insulin resistance and glucose intolerance in mice fed a high-fat diet, which was completely obliterated in AdipoR1 and AdipoR2 double-knockout mice. Moreover, AdipoRon ameliorated diabetes of genetically obese rodent model
db/db
mice, and prolonged the shortened lifespan of
db/db
mice on a high-fat diet. Thus, orally active AdipoR agonists such as AdipoRon are a promising therapeutic approach for the treatment of obesity-related diseases such as type 2 diabetes.
An orally active small molecule, AdipRon, that binds to and activates both adiponectin receptors (AdipoR1 and AdipoR2) is identified; it ameliorates diabetes in mice on a high-fat diet and in genetically obese
db
/
db
mice, and if this can be extrapolated to humans, orally active agonists such as AdipoRon are a promising new approach to treat obesity-related diseases such as type 2 diabetes.
AdipRon, a small molecule with antidiabetic activity
Adiponectin is a fat-derived hormone that seems to have a crucial role in the protection from insulin resistance/diabetes and atherosclerosis. This study identifies an orally active compound, obtained by screening small molecules in the chemical library at the University of Tokyo's Open Innovation Center for Drug Discovery, that binds to and activates the AdipoR1 and AdipoR2 receptors that mediate adiponectin's antidiabetic action. Named AdipRon, the compound ameliorates insulin resistance and glucose intolerance in mice on a high-fat diet and in genetically obese mice. AdipoRon also extends the shortened lifespan of
db
/
db
mice on a high-fat diet. If this work can be extrapolated to humans, orally active agonists such as AdipoRon could offer a promising new approach to treat obesity-related diseases such as type 2 diabetes.
Journal Article
Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin
by
Christie, Brian R.
,
Lee, Tatia M. C.
,
Ching, Yick Pang
in
adipocytes
,
Adipocytes - metabolism
,
Adipocytes - pathology
2014
Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood-brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors. ADN deficiency did not reduce the basal hippocampal neurogenesis or neuronal differentiation but diminished the effectiveness of exercise in increasing hippocampal neurogenesis. Furthermore, exerciseinduced reduction in depression-like behaviors was abrogated in ADN-deficient mice, and this impairment in ADN-deficient mice was accompanied by defective running-induced phosphorylation of AMP-activated protein kinase (AMPK) in the hippocampal tissue. In vitro analyses indicated that ADN itself could increase cell proliferation of both hippocampal progenitor cells and Neuro2a neuroblastoma cells. The neurogenic effects of ADN were mediated by the ADN receptor 1 (ADNR1), because siRNA targeting ADNR1, but not ADNR2, inhibited the capacity of ADN to enhance cell proliferation. These data suggest that adiponectin may play a significant role in mediating the effects of exercise on hippocampal neurogenesis and depression, possibly by activation of the ADNR1/AMPK signaling pathways, and also raise the possibility that adiponectin and its agonists may represent a promising therapeutic treatment for depression.
Journal Article
Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases
2008
Adiponectin and adiponectin receptors (AdipoRs) have been found to play significant roles in the etiology of obesity-related chronic disease. Their discovery has been a long and complicated path, with many challenges. Developing methods to unravel the molecular secrets has been an informative process in itself. However, with both functional and genetic studies confirming adiponectin as a therapeutic target adipokine, many roles and interactions with certain other biomolecules have been clearly defined. We have found that decreased high molecular weight (HMW) adiponectin plays a crucial and causal role in obesity-linked insulin resistance and metabolic syndrome; that AdipoR1 and AdipoR2 serve as the major AdipoRs in vivo; and that AdipoR1 activates the AMP kinase (AMPK) pathway and AdipoR2, the peroxisome proliferator-activated receptor alpha (PPARα) pathway in the liver, to increase insulin sensitivity and decrease inflammation. Further conclusions are that decreased adiponectin action and increased monocyte chemoattractant protein-1 (MCP-1) form a vicious adipokine network causing obesity-linked insulin resistance and metabolic syndrome; PPARγ upregulates HMW adiponectin and PPARα upregulates AdipoRs; that dietary osmotin can serve as a naturally occurring adiponectin receptor agonist; and finally, that under starvation conditions, MMW adiponectin activates AMPK in hypothalamus, and promotes food intake, and at the same time HMW adiponectin activates AMPK in peripheral tissues, such as skeletal muscle, and stimulates fatty-acids combustion. Importantly, under pathophysiological conditions, such as obesity and diabetes, only HMW adiponectin was decreased; therefore, strategies to increase only HMW adiponectin may be a logical approach to provide a novel treatment modality for obesity-linked diseases, such as insulin resistance and type 2 diabetes. It is hoped that these data will be helpful in developing treatments to counteract the destructive, expensive and painful effects of obesity.
Journal Article
Adiponectin: mechanistic insights and clinical implications
2012
Adiponectin is an adipocyte-derived secretory protein that has been very widely studied over the past 15 years. A multitude of different functions have been attributed to this adipokine. It has been characterised in vitro at the level of tissue culture systems and in vivo through genetic manipulation of rodent models. It is also widely accepted as a biomarker in clinical studies. Originating in adipose tissue, generally positive metabolic effects have been attributed to adiponectin. In this review, we briefly discuss the key characteristics of this interesting but very complex molecule, highlight recent results in the context of its mechanism of action and summarise some of the key epidemiological data that helped establish adiponectin as a robust biomarker for insulin sensitivity, cardiovascular disease and many additional disease phenomena.
Journal Article
Adiponectin pathway activation dampens inflammation and enhances alveolar macrophage fungal killing via LC3-associated phagocytosis
by
Templeton, Steven P.
,
Lim, Joo-Yeon
,
Goli, Sri Harshini
in
Adiponectin
,
Adiponectin - genetics
,
Adiponectin - immunology
2025
Although innate immunity is critical for antifungal host defense against the human opportunistic fungal pathogen Aspergillus fumigatus , potentially damaging inflammation must be controlled. Adiponectin (APN) is an adipokine produced mainly in adipose tissue that exerts anti-inflammatory effects in adipose-distal tissues such as the lung. We observed increased mortality and increased fungal burden and inflammation in neutropenic mice with invasive aspergillosis (IA) that lack APN or the APN receptors AdipoR1 or AdipoR2. Alveolar macrophages (AMs), early immune sentinels that detect and respond to lung infection, express both receptors, and APN-deficient AMs exhibited an inflammatory phenotype that was associated with decreased fungal killing. Pharmacological stimulation of AMs with AdipoR agonist AdipoRon rescued deficient killing in APN-/- AMs and was dependent on the presence of either receptor. Finally, APN-enhanced fungal killing was associated with increased activation of the non-canonical LC3 pathway of autophagy. Thus, our study identifies a novel role for APN in LC3-mediated killing of A.fumigatus .
Journal Article
Crystal structures of the human adiponectin receptors
2015
Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5′ AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and
UCP2
upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure–function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes.
The crystal structures of the human adiponectin receptors AdipoR1 and AdipoR2 are solved at 2.9 and 2.4 Å resolution, respectively; the structural and functional information may aid the development and optimization of adiponectin receptor agonists for the treatment of obesity-related diseases.
Adiponectin receptor structures
Adiponectin is an anti-diabetic molecule. Its plasma levels are reduced in obesity and type 2 diabetes, and replenishment of adiponectin reportedly ameliorates glucose intolerance and dyslipidaemia in mice. Shigeyuki Yokoyama and colleagues now report the crystal structures of the human adiponectin receptors AdipoR1 and AdipoR2 at 2.9 Å and 2.4 Å resolution, respectively. The resulting structural and functional information may aid the development and optimization of adiponectin receptor agonists for the treatment of obesity-related diseases.
Journal Article
AdipoRon’s Impact on Alzheimer’s Disease—A Systematic Review and Meta-Analysis
by
da Silva, Rebeca Maria Siqueira
,
Cavallari Strozze Catharin, Virgínia Maria
,
dos Santos Haber, Jesselina Francisco
in
Advertising executives
,
Agonists
,
Alzheimer Disease - drug therapy
2025
Alzheimer’s disease (AD) remains a leading cause of cognitive decline and mortality worldwide, characterized by neurodegeneration, synaptic deficiencies, and neuroinflammation. Despite advancements in early detection, diagnosis, and treatment, AD presents substantial challenges due to its complex pathology, heterogeneity, and the limited efficacy of current therapies. Consequently, there is a pressing need for novel therapeutic agents to target the multifaceted aspects of AD pathology, enhance current treatments, and minimize adverse effects. AdipoRon, an adiponectin receptor agonist, has garnered interest for its potential neuroprotective effects, including reducing neuroinflammation, improving mitochondrial function, and mitigating tau hyperphosphorylation. This review aimed to evaluate the effects of AdipoRon-based adiponectin replacement therapy against AD, using a comprehensive approach grounded in the PICO framework—Population, Intervention, Comparison, and Outcomes. A total of six studies were reviewed, including in vitro and in vivo investigations examining AdipoRon’s impact on various AD models. These studies involved different cell lines and transgenic mouse models, assessing various outcomes such as cognitive function, neuroinflammation, tau phosphorylation, synaptic deficiencies, and relevant molecular pathways. By synthesizing data from these studies, our review thoroughly explains AdipoRon’s neuroprotective effects, mechanisms of action, and potential as a therapeutic agent for AD. This analysis aims to highlight the current state of knowledge, identify gaps in the research, and suggest directions for future studies and clinical applications.
Journal Article
Adiponectin receptors sustain haematopoietic stem cells throughout adulthood by protecting them from inflammation
2022
How are haematopoietic stem cells (HSCs) protected from inflammation, which increases with age and can deplete HSCs? Adiponectin, an anti-inflammatory factor that is not required for HSC function or haematopoiesis, promotes stem/progenitor cell proliferation after bacterial infection and myeloablation. Adiponectin binds two receptors, AdipoR1 and AdipoR2, which have ceramidase activity that increases upon adiponectin binding. Here we found that adiponectin receptors are non-cell-autonomously required in haematopoietic cells to promote HSC quiescence and self-renewal. Adiponectin receptor signalling suppresses inflammatory cytokine expression by myeloid cells and T cells, including interferon-γ and tumour necrosis factor. Without adiponectin receptors, the levels of these factors increase, chronically activating HSCs, reducing their self-renewal potential and depleting them during ageing. Pathogen infection accelerates this loss of HSC self-renewal potential. Blocking interferon-γ or tumour necrosis factor signalling partially rescues these effects. Adiponectin receptors are thus required in immune cells to sustain HSC quiescence and to prevent premature HSC depletion by reducing inflammation.
Meacham et al. report that adiponectin receptors suppress chronic inflammatory signalling by immune effector cells to prevent haematopoietic stem cell exit from quiescence and, thus, protect them from exhaustion.
Journal Article
Adipose Tissue, Obesity and Adiponectin: Role in Endocrine Cancer Risk
by
Sciacca, Laura
,
Frittitta, Lucia
,
Tumminia, Andrea
in
Adenosine
,
Adipocytes
,
Adiponectin - chemistry
2019
Adipose tissue has been recognized as a complex organ with endocrine and metabolic roles. The excess of fat mass, as occurs during overweight and obesity states, alters the regulation of adipose tissue, contributing to the development of obesity-related disorders. In this regard, many epidemiological studies shown an association between obesity and numerous types of malignancies, comprising those linked to the endocrine system (e.g., breast, endometrial, ovarian, thyroid and prostate cancers). Multiple factors may contribute to this phenomenon, such as hyperinsulinemia, dyslipidemia, oxidative stress, inflammation, abnormal adipokines secretion and metabolism. Among adipokines, growing interest has been placed in recent years on adiponectin (APN) and on its role in carcinogenesis. APN is secreted by adipose tissue and exerts both anti-inflammatory and anti-proliferative actions. It has been demonstrated that APN is drastically decreased in obese individuals and that it can play a crucial role in tumor growth. Although literature data on the impact of APN on carcinogenesis are sometimes conflicting, the most accredited hypothesis is that it has a protective action, preventing cancer development and progression. The aim of the present review is to summarize the currently available evidence on the involvement of APN and its signaling in the etiology of cancer, focusing on endocrine malignancies.
Journal Article
Adiponectin-mimetic novel nonapeptide rescues aberrant neuronal metabolic-associated memory deficits in Alzheimer’s disease
by
Rutten, Bart P. F.
,
Chung, Seung Soo
,
Kim, Myeong Ok
in
Adiponectin
,
Adiponectin - deficiency
,
Adiponectin-mimetic novel nonapeptide (Os-pep)
2021
Background
Recently, we and other researchers reported that brain metabolic disorders are implicated in Alzheimer’s disease (AD), a progressive, devastating and incurable neurodegenerative disease. Hence, novel therapeutic approaches are urgently needed to explore potential and novel therapeutic targets/agents for the treatment of AD. The neuronal adiponectin receptor 1 (AdipoR1) is an emerging potential target for intervention in metabolic-associated AD. We aimed to validate this hypothesis and explore in-depth the therapeutic effects of an osmotin-derived adiponectin-mimetic novel nonapeptide (Os-pep) on metabolic-associated AD.
Methods
We used an Os-pep dosage regimen (5 μg/g, i.p., on alternating days for 45 days) for APP/PS1 in amyloid β oligomer-injected, transgenic adiponectin knockout (Adipo−/−) and AdipoR1 knockdown mice. After behavioral studies, brain tissues were subjected to biochemical and immunohistochemical analyses. In separate cohorts of mice, electrophysiolocal and Golgi staining experiments were performed. To validate the
in vivo
studies, we used human APP Swedish (swe)/Indiana (ind)-overexpressing neuroblastoma SH-SY5Y cells, which were subjected to knockdown of AdipoR1 and APMK with siRNAs, treated with Os-pep and other conditions as per the mechanistic approach, and we proceeded to perform further biochemical analyses.
Results
Our
in vitro
and
in vivo
results show that Os-pep has good safety and neuroprotection profiles and crosses the blood-brain barrier. We found reduced levels of neuronal AdipoR1 in human AD brain tissue. Os-pep stimulates AdipoR1 and its downstream target, AMP-activated protein kinase (AMPK) signaling, in AD and Adipo−/− mice. Mechanistically, in all of the
in vivo
and
in vitro
studies, Os-pep rescued aberrant neuronal metabolism by reducing neuronal insulin resistance and activated downstream insulin signaling through regulation of AdipoR1/AMPK signaling to consequently improve the memory functions of the AD and Adipo−/− mice, which was associated with improved synaptic function and long-term potentiation via an AdipoR1-dependent mechanism.
Conclusion
Our findings show that Os-pep activates AdipoR1/AMPK signaling and regulates neuronal insulin resistance and insulin signaling, which subsequently rescues memory deficits in AD and adiponectin-deficient models. Taken together, the results indicate that Os-pep, as an adiponectin-mimetic novel nonapeptide, is a valuable and promising potential therapeutic candidate to treat aberrant brain metabolism associated with AD and other neurodegenerative diseases.
Journal Article