Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
230
result(s) for
"Adipose Tissue - innervation"
Sort by:
The role of somatosensory innervation of adipose tissues
2022
Adipose tissues communicate with the central nervous system to maintain whole-body energy homeostasis. The mainstream view is that circulating hormones secreted by the fat convey the metabolic state to the brain, which integrates peripheral information and regulates adipocyte function through noradrenergic sympathetic output
1
. Moreover, somatosensory neurons of the dorsal root ganglia innervate adipose tissue
2
. However, the lack of genetic tools to selectively target these neurons has limited understanding of their physiological importance. Here we developed viral, genetic and imaging strategies to manipulate sensory nerves in an organ-specific manner in mice. This enabled us to visualize the entire axonal projection of dorsal root ganglia from the soma to subcutaneous adipocytes, establishing the anatomical underpinnings of adipose sensory innervation. Functionally, selective sensory ablation in adipose tissue enhanced the lipogenic and thermogenetic transcriptional programs, resulting in an enlarged fat pad, enrichment of beige adipocytes and elevated body temperature under thermoneutral conditions. The sensory-ablation-induced phenotypes required intact sympathetic function. We postulate that beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system. These results reveal an important role of the innervation by dorsal root ganglia of adipose tissues, and could enable future studies to examine the role of sensory innervation of disparate interoceptive systems.
Beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system.
Journal Article
The different shades of fat
2014
Our understanding of adipose tissue biology has progressed rapidly since the turn of the century. White adipose tissue has emerged as a key determinant of healthy metabolism and metabolic dysfunction. This realization is paralleled only by the confirmation that adult humans have heat-dissipating brown adipose tissue, an important contributor to energy balance and a possible therapeutic target for the treatment of metabolic disease. We propose that the development of successful strategies to target brown and white adipose tissues will depend on investigations that elucidate their developmental origins and cell-type-specific functional regulators.
Journal Article
The involvement of neuroimmune cells in adipose innervation
by
Willows, Jake
,
Godwin, James
,
Blaszkiewicz, Magdalena
in
Adipocytes
,
Adipose Tissue - immunology
,
Adipose Tissue - innervation
2020
Background
Innervation of adipose tissue is essential for the proper function of this critical metabolic organ. Numerous surgical and chemical denervation studies have demonstrated how maintenance of brain-adipose communication through both sympathetic efferent and sensory afferent nerves helps regulate adipocyte size, cell number, lipolysis, and ‘browning’ of white adipose tissue. Neurotrophic factors are growth factors that promote neuron survival, regeneration, and plasticity, including neurite outgrowth and synapse formation. Peripheral immune cells have been shown to be a source of neurotrophic factors in humans and mice. Although a number of immune cells reside in the adipose stromal vascular fraction (SVF), it has remained unclear what roles they play in adipose innervation. We previously demonstrated that adipose SVF secretes brain derived neurotrophic factor (BDNF).
Methods
We now show that deletion of this neurotrophic factor from the myeloid lineage of immune cells led to a ‘genetic denervation’ of inguinal subcutaneous white adipose tissue (scWAT), thereby causing decreased energy expenditure, increased adipose mass, and a blunted UCP1 response to cold stimulation.
Results
We and others have previously shown that noradrenergic stimulation via cold exposure increases adipose innervation in the inguinal depot. Here we have identified a subset of myeloid cells that home to scWAT upon cold exposure and are Ly6C
+
CCR2
+
Cx3CR1
+
monocytes/macrophages that express noradrenergic receptors and BDNF. This subset of myeloid lineage cells also clearly interacted with peripheral nerves in the scWAT and were therefore considered neuroimmune cells.
Conclusions
We propose that these myeloid lineage, cold induced neuroimmune cells (CINCs) are key players in maintaining adipose innervation as well as promoting adipose nerve remodeling under noradrenergic stimulation, such as cold exposure.
Journal Article
Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue
2021
Beiging of white adipose tissue (WAT) is associated with an increase of anti-inflammatory M2-like macrophages in WAT. However, mechanisms through which M2-like macrophages affect beiging are incompletely understood. Here, we show that the macrophage cytokine Slit3 is secreted by adipose tissue macrophages and promotes cold adaptation by stimulating sympathetic innervation and thermogenesis in mice. Analysing the transcriptome of M2-like macrophages in murine inguinal WAT (iWAT) after cold exposure, we identify Slit3 as a secreted cytokine. Slit3 binds to the ROBO1 receptor on sympathetic neurons to stimulate Ca
2+
/calmodulin-dependent protein kinase II signalling and norepinephrine release, which enhances adipocyte thermogenesis. Adoptive transfer of Slit3-overexpressing M2 macrophages to iWAT promotes beiging and thermogenesis, whereas mice that lack Slit3 in myeloid cells are cold-intolerant and gain more weight. Our findings shed new light on the integral role of M2-like macrophages for adipose tissue homeostasis and uncover the macrophage–Slit3–sympathetic neuron–adipocyte signalling axis as a regulator of long-term cold adaptation.
Slit3 is shown to be secreted from M2-like macrophages resident in adipose tissue, where it enables cold adaptation by stimulating norepinephrine release from sympathetic neurons.
Journal Article
Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system
2015
Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.
Journal Article
Sympathetic nerve innervation is required for beigeing in white fat
by
Cao, Qiang
,
Shi, Hang
,
Jing, Jia
in
Adipocytes
,
Adipocytes, Beige - metabolism
,
Adipocytes, Beige - physiology
2019
It is increasingly recognized that activation of beige adipocyte thermogenesis by pharmacological or genetic approaches increases energy expenditure and alleviates obesity. Sympathetic nervous system (SNS) directly innervating brown adipose tissue (BAT) and white adipose tissue (WAT) plays a key role in promoting nonshivering thermogenesis. However, direct evidence that supports the importance of SNS innervation for beige adipocyte formation is still lacking, and the significance of beige adipocyte thermogenesis in protection of body temperature during cold challenge is not clear. Here we tested the necessity of SNS innervation into WAT for beige adipocyte formation in mice with defective brown fat thermogenesis via interscapular BAT (iBAT) SNS denervation. SNS denervation was achieved by microinjection of 6‐hydroxydopamine (6‐OHDA), a selective neurotoxin to SNS nerves, into iBAT, inguinal WAT (iWAT), or both. The partial chemical denervation of iBAT SNS down‐regulated UCP‐1 protein expression in iBAT demonstrated by immunoblotting and immunohistochemical measurements. This was associated with an up‐regulation of UCP1 protein expression and enhanced formation of beige cells in iWAT of mice with iBAT SNS denervation. In contrast, the chemical denervation of iWAT SNS completely abolished the upregulated UCP‐1 protein and beige cell formation in iWAT of mice with iBAT SNS denervation. Our data demonstrate that SNS innervation in WAT is required for beige cell formation during cold–induced thermogenesis. We conclude that there exists a coordinated thermoregulation for BAT and WAT thermogenesis via a functional cross talk between BAT and WAT SNS. Our data demonstrate that sympathetic nervous system (SNS) innervation in white adipose tissue (WAT) is required for beige cell formation during cold–induced thermogenesis. We conclude that there exists a coordinated thermoregulation for brown adipose tissue (BAT) and WAT thermogenesis via a functional cross talk between BAT and WAT SNS.
Journal Article
γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis
2020
The sympathetic nervous system innervates peripheral organs to regulate their function and maintain homeostasis, whereas target cells also produce neurotrophic factors to promote sympathetic innervation
1
,
2
. The molecular basis of this bi-directional communication remains to be fully determined. Here we use thermogenic adipose tissue from mice as a model system to show that T cells, specifically γδ T cells, have a crucial role in promoting sympathetic innervation, at least in part by driving the expression of TGFβ1 in parenchymal cells via the IL-17 receptor C (IL-17RC). Ablation of IL-17RC specifically in adipose tissue reduces expression of TGFβ1 in adipocytes, impairs local sympathetic innervation and causes obesity and other metabolic phenotypes that are consistent with defective thermogenesis; innervation can be fully rescued by restoring TGFβ1 expression. Ablating γδ Τ cells and the IL-17RC signalling pathway also impairs sympathetic innervation in other tissues such as salivary glands. These findings demonstrate coordination between T cells and parenchymal cells to regulate sympathetic innervation.
Vγ6
+
Vδ1
+
γδ T cells control tolerance to cold by activating adipocyte IL-17RC and promoting sympathetic innervation of thermogenic adipose tissue in mice.
Journal Article
A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue
2020
Mutations in the leptin gene (
ob
) result in a metabolic disorder that includes severe obesity
1
, and defects in thermogenesis
2
and lipolysis
3
, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that
ob/ob
mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of
ob/ob
mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNF
PVH
). Deletion of BDNF
PVH
blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.
The authors show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.
Journal Article
Neuro-mesenchymal units control ILC2 and obesity via a brain–adipose circuit
by
Klein Wolterink, Roel G. J.
,
Domingos, Ana I.
,
Godinho-Silva, Cristina
in
13/1
,
13/106
,
13/21
2021
Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation
1
–
4
. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain–body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain–adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the β2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.
Signals from the sympathetic nervous system act via mesenchymal stromal cells to regulate the function of group 2 innate lymphoid cells and control adipocyte metabolism.
Journal Article
Leptin and brain-adipose crosstalks
2018
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Journal Article