Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,337
result(s) for
"Adipose-derived stem cells"
Sort by:
A comparative assessment of adipose‐derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment
by
Zou, Ying
,
He, Yi
,
Pan, Zhang‐yi
in
Adipose tissue
,
Animals
,
Anti-Inflammatory Agents - metabolism
2017
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.
Journal Article
The Transplantation Resistance of Type II Diabetes Mellitus Adipose-Derived Stem Cells Is Due to G6PC and IGF1 Genes Related to the FoxO Signaling Pathway
by
Michiko Horiguchi
,
Kentaro Ushijima
,
Yuya Turudome
in
Apoptosis
,
Cell growth
,
Cells, Cultured
2021
In cases of patients with rapidly progressive diabetes mellitus (DM), autologous stem cell transplantation is considered as one of the regenerative treatments. However, whether the effects of autonomous stem cell transplantation on DM patients are equivalent to transplantation of stem cells derived from healthy persons is unclear. This study revealed that adipose-derived mesenchymal stem cells (ADSC) derived from type II DM patients had lower transplantation efficiency, proliferation potency, and stemness than those derived from healthy persons, leading to a tendency to induce apoptotic cell death. To address this issue, we conducted a cyclopedic mRNA analysis using a next-generation sequencer and identified G6PC3 and IGF1, genes related to the FoxO signaling pathway, as the genes responsible for lower performance. Moreover, it was demonstrated that the lower transplantation efficiency of ADSCs derived from type II DM patients might be improved by knocking down both G6PC3 and IGF1 genes. This study clarified the difference in transplantation efficiency between ADSCs derived from type II DM patients and those derived from healthy persons and the genes responsible for the lower performance of the former. These results can provide a new strategy for stabilizing the quality of stem cells and improving the therapeutic effects of regenerative treatments on autonomous stem cell transplantation in patients with DM.
Journal Article
Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration
by
da Silva Fernandes, Maria
,
Ulrich, Henning
,
Sabongi, Rodrigo
in
Bone marrow
,
Care and treatment
,
Gene expression
2018
Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs) have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed), Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle), ADSCs (sciatic nerve injury + intravenous MG containing ADSCs), and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs) groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios) in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for engraftment.
Journal Article
Exosomes from adipose‐derived stem cells and application to skin wound healing
by
Nie, Fangfei
,
Wang, Baicheng
,
Lin, Shuyan
in
Adipocytes - cytology
,
adipose‐derived stem cells
,
Angiogenesis
2021
Skin wound healing is an intractable problem that represents an urgent clinical need. To solve this problem, a large number of studies have focused on the use of exosomes (EXOs) derived from adipose‐derived stem cells (ADSCs). This review describes the mechanisms whereby ADSCs‐EXOs regulate wound healing and their clinical application. In the wound, ADSCs‐EXOs modulate immune responses and inflammation. They also promote angiogenesis, accelerate proliferation and re‐epithelization of skin cells, and regulate collagen remodelling which inhibits scar hyperplasia. Compared with ADSCs therapeutics, ADSCs‐EXOs have highly stability and are easily stored. Additionally, they are not rejected by the immune system and have a homing effect and their dosage can be easily controlled. ADSCs‐EXOs can improve fat grafting and promote wound healing in patients with diabetes mellitus. They can also act as a carrier and combined scaffold for treatment, leading to scarless cutaneous repair. Overall, ADSCs‐EXOs have the potential to be used in the clinic to promote wound healing. This review describes the mechanisms whereby exosomes (EXOs) derived from adipose‐derived stem cells (ADSCs) regulate wound healing and their clinical application. In the wound, ADSCs‐EXOs modulate immune responses and inflammation, promote angiogenesis, accelerate proliferation and re‐epithelization of skin cells and regulate collagen remodelling, which inhibits scar hyperplasia. ADSCs‐EXOs have the potential to be used in the clinic, as they can improve fat grafting, promote wound healing of diabetic patients and act as a carrier and combined scaffold for treatment, leading to scarless cutaneous repair.
Journal Article
An Update on Adipose‐Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity
by
Ge, Gaoran
,
Qiao, Yusen
,
Yang, Huilin
in
3D bioprinting
,
Adipocytes
,
Adipose Tissue - metabolism
2023
Over the last decade, adipose‐derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC‐based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC‐based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC‐based therapies are expected to be more tissue‐specific and increasingly important in regenerative medicine. Adipose‐derived stem cells (ADSCs) serve as an ideal candidate for regenerative medicine owing to their ability to differentiate into multilineages, facilitate angiogenesis, suppress apoptosis, and participate in immunoregulation. Numerous preclinical studies and clinical trials have demonstrated the therapeutic potential of ADSCs in fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration.
Journal Article
Efficacy of combined treatment with human adipose tissue stem cell‐derived exosome‐containing solution and microneedling for facial skin aging: A 12‐week prospective, randomized, split‐face study
by
Park, Gyeong‐Hun
,
Park, Byung Chul
,
Park, Kui Young
in
adipose‐derived stem cells
,
Aging
,
Body fat
2023
Background Studies have reported promising results of mesenchymal stem cell therapies for skin aging. However, in the use of mesenchymal stem cells, some drawbacks including rarely possible tumorigenicity and low engraftment rates have limited their widespread clinical use. Adipose tissue stem cell‐derived exosomes (ASCEs) are emerging as effective cell‐free therapeutic agents. Aims It was evaluated the clinical efficacy of combining the application of human ASCE‐containing solution (HACS) with microneedling to treat facial skin aging. Methods A 12‐week, prospective, randomized, split‐face, comparative study was conducted. Twenty‐eight individuals underwent three treatment sessions separated by 3‐week intervals and were followed up for 6 weeks after the last session. At each treatment session, HACS and microneedling were administered to one side of the face, and normal saline solution and microneedling were administered to the other side as a control. Results The Global Aesthetic Improvement Scale score was significantly higher on the HACS‐treated side than on the control side at the final follow‐up visit (p = 0.005). Objective measurements obtained by different devices including PRIMOS Premium, Cutometer MPA 580, Corneometer CM 825, and Mark‐Vu confirmed greater clinical improvements in skin wrinkles, elasticity, hydration, and pigmentation on the HACS‐treated side than on the control side. The results of the histopathological evaluation were consistent with the clinical findings. No serious adverse events were observed. Conclusions These findings demonstrate that combined treatment using HACS and microneedling is effective and safe for treating facial skin aging.
Journal Article
Extracellular vesicle‐enclosed miR‐486‐5p mediates wound healing with adipose‐derived stem cells by promoting angiogenesis
by
Tu, Jun
,
Huang, Jinjun
,
Lu, Yingjie
in
Adipocytes - metabolism
,
Adipocytes - pathology
,
Adipose Tissue - metabolism
2020
Adipose‐derived stem cells (ASC) are said to have a pivotal role in wound healing. Specifically, ASC‐secreted extracellular vesicles (EV) carry diverse cargos such as microRNAs (miRNAs) to participate in the ASC‐based therapies. Considering its effects, we aimed to investigate the role of ASC‐EVs in the cutaneous wound healing accompanied with the study on the specific cargo‐medicated effects on wound healing. Two full‐thickness excisional skin wounds were created on mouse dorsum, and wound healing was recorded at the indicated time points followed by histological analysis and immunofluorescence staining for CD31 and α‐SMA. Human skin fibroblasts (HSFs) and human microvascular endothelial cells (HMECs) were co‐cultured with EVs isolated from ASC (ASC‐EVs), respectively, followed by the evaluation of their viability and mobility using CCK‐8, scratch test and transwell migration assays. Matrigel‐based angiogenesis assays were performed to evaluate vessel‐like tube formation by HMECs in vitro. ASC‐EVs accelerated the healing of full‐thickness skin wounds, increased re‐epithelialization and reduced scar thickness whilst enhanced collagen synthesis and angiogenesis in murine models. However, miR‐486‐5p antagomir abrogated the ASC‐EVs‐induced effects. Intriguingly, miR‐486‐5p was found to be highly enriched in ASC‐EVs, exhibiting an increase in viability and mobility of HSFs and HMECs and enhanced the angiogenic activities of HMECs. Notably, we also demonstrated that ASC‐EVs‐secreted miR‐486‐5p achieved the aforesaid effects through its target gene Sp5. Hence, our results suggest that miR‐486‐5p released by ASC‐EVs could be a critical mediator to develop an ASC‐based therapeutic strategy for wound healing.
Journal Article
Adipose-derived stem cell exosomes loaded with icariin alleviates rheumatoid arthritis by modulating macrophage polarization in rats
by
Yan, Qiqi
,
Yang, Yongsheng
,
Zhu, Ruyuan
in
Adipose Tissue - cytology
,
Adipose-derived stem cell exosomes
,
Advanced Non-viral Delivery Systems in Tissue Engineering
2024
Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by synovitis and cartilage destruction. The active compound, icariin (ICA), derived from the herb Epimedium, exhibits potent anti-inflammatory properties. However, its clinical utility is limited by its water insolubility, poor permeability, and low bioavailability. To address these challenges, we developed a multifunctional drug delivery system—adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA to target active macrophages in synovial tissue and modulate macrophage polarization from M1 to M2. High-performance liquid chromatography analysis confirmed a 92.4 ± 0.008% loading efficiency for ADSCs-EXO-ICA. In vitro studies utilizing cellular immunofluorescence (IF) and flow cytometry demonstrated significant inhibition of M1 macrophage proliferation by ADSCs-EXO-ICA. Enzyme-linked immunosorbent assay, cellular transcriptomics, and real-time quantitative PCR indicated that ADSCs-EXO-ICA promotes an M1-to-M2 phenotypic transition by reducing glycolysis through the inhibition of the ERK/HIF-1α/GLUT1 pathway. In vivo, ADSCs-EXO-ICA effectively accumulated in the joints. Pharmacodynamic assessments revealed that ADSCs-EXO-ICA decreased cytokine levels and mitigated arthritis symptoms in collagen-induced arthritis (CIA) rats. Histological analysis and micro computed tomography confirmed that ADSCs-EXO-ICA markedly ameliorated synovitis and preserved cartilage. Further in vivo studies indicated that ADSCs-EXO-ICA suppresses arthritis by promoting an M1-to-M2 switch and suppressing glycolysis. Western blotting supported the therapeutic efficacy of ADSCs-EXO-ICA in RA, confirming its role in modulating macrophage function through energy metabolism regulation. Thus, this study not only introduces a drug delivery system that significantly enhances the anti-RA efficacy of ADSCs-EXO-ICA but also elucidates its mechanism of action in macrophage function inhibition.
Graphical abstract
Journal Article
Effect of exosomes from adipose‐derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury
by
Lin, Yao‐Fa
,
Xie, Zheng
,
Lin, Hao‐Dong
in
Adipose Tissue - cytology
,
adipose‐derived stem cells
,
Animals
2020
Aims Recovery after peripheral nerve injury (PNI) is often difficult, and there is no optimal treatment. Schwann cells (SCs) are important for peripheral nerve regeneration, so SC‐targeting treatments have gained importance. Adipose‐derived stem cells (ADSCs) and their exosomes can promote peripheral nerve repair, but their interactions with SCs are unclear. Methods Purified SCs from sciatic nerve injury sites were harvested, and apoptosis and proliferation of SCs at post‐PNI 24 hours were analyzed. The effects of coculture with ADSCs and different concentrations of ADSC‐derived exosomes (ADSC‐Exo) were studied through in vitro experiments by flow cytometry, CCK8 assay, immunofluorescence staining, and histological analysis. The expression of the apoptosis‐related genes Bcl‐2 and Bax was also analyzed by qRT‐PCR. Results ADSC‐Exo reduced the apoptosis of SCs after PNI by upregulating the anti‐apoptotic Bcl‐2 mRNA expression and downregulating the pro‐apoptotic Bax mRNA expression. Further, it also improved the proliferation rate of SCs. This effect was confirmed by the morphological and histological findings in PNI model rats. Conclusion Our results present a novel exosome‐mediated mechanism for ADSC‐SC cross talk that reduces the apoptosis and promotes the proliferation of SCs and may have therapeutic potential in the future.
Journal Article
The effects of mechanical stretch on the biological characteristics of human adipose‐derived stem cells
by
Gao, Ya
,
Xie, Yun
,
Zheng, Danning
in
Adipocytes - metabolism
,
Adipocytes - physiology
,
Adipogenesis - physiology
2019
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs), which have promised a vast therapeutic potential in tissue regeneration. Recent studies have demonstrated that combining stem cells with mechanical stretch may strengthen the efficacy of regenerative therapies. However, the exact influences of mechanical stretch on MSCs still remain inconclusive. In this study, human ADSCs (hADSCs) were applied cyclic stretch stimulation under an in vitro stretching model for designated duration. We found that mechanical stretch significantly promoted the proliferation, adhesion and migration of hADSCs, suppressing cellular apoptosis and increasing the production of pro‐healing cytokines. For differentiation of hADSCs, mechanical stretch inhibited adipogenesis, but enhanced osteogenesis. Long‐term stretch could promote ageing of hADSCs, but did not alter the cell size and typical immunophenotypic characteristics. Furthermore, we revealed that PI3K/AKT and MAPK pathways might participate in the effects of mechanical stretch on the biological characteristics of hADSCs. Taken together, mechanical stretch is an effective strategy for enhancing stem cell behaviour and regulating stem cell fate. The synergy between hADSCs and mechanical stretch would most likely facilitate tissue regeneration and promote the development of stem cell therapy.
Journal Article